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ABSTRACT
A definition of intelligence is given in terms of performance

that can be quantitatively measured.  Behaviors required of
unmanned ground vehicles are described and computational
requirements for intelligent control at seven hierarchical levels in a
military scout platoon are outlined.  Metrics and measurements are
suggested for evaluating the performance of unmanned ground
vehicles.  Calibrated data and test facilities are suggested to
facilitate the development of intelligent systems.
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1. DEFINITIONS
The definition of intelligence is a controversial subject.

Hardly any two persons define intelligence the same.  Some
even question whether intelligence can be defined at all.
Yet, if we are to perform serious research on intelligent
systems, we must not only be able to define intelligence, we
must be able to quantitatively measure it.  Thus, for the
purpose of discussion of the issues addressed in this paper,
we will define intelligence as follows [1]:

Df:  intelligence

the ability to act appropriately in an uncertain
environment

Df:  appropriate action

that which maximizes the probability of success

Df:  success

the achievement or maintenance of behavioral goals

Df:  behavioral goal

a desired state of the environment that a behavior is
designed to achieve or maintain

This definition of intelligence addresses both biological
and machine embodiments.  It admits a broad spectrum of
behaviors, from the simple to the complex.  We deliberately

do not define intelligence in binary terms (i.e., this machine
is intelligent and this one is not, or this species is intelligent
and this one is not) and we do not limit our definition of
intelligence to behavior that is beyond our understanding.
Our definition includes the entire spectrum of intellectual
capabilities from that of a paramecium to that of an Einstein,
from that of a thermostat to that of the most sophisticated
computer system.  We include the ability of a robot to spot-
weld an automobile body, the ability of a bee to navigate in a
field of wild flowers, a squirrel to jump from limb to limb, a
duck to land in a high wind, and a swallow to catch insects
in flight above a field of wild flowers. We include the ability
of blue jays to battle in the bushes for a nesting site, a pride
of lions to conduct a coordinated attack on a wildebeest, and
a flock of geese to migrate south for the winter. We include
a human’s ability to bake a cake, play the violin, read a
book, write a poem, fight a war, or invent a computer.

Our definition of intelligence recognizes degrees, or
levels, of intelligence.  These are determined by the
following parameters: 1) the computational power and
memory capacity of the system's brain (or computer), 2) the
sophistication of the processes the system employs for
sensory processing, world modeling, behavior generation,
value judgment, and communication, and 3) the quality and
quantity of information and values the system has stored in
its memory.  The measure of intelligence is success in
solving problems, anticipating the future, and acting so as to
maximize the likelihood of achieving goals.  Success can be
measured by various criteria of performance (including life
or death, pain or pleasure, reliability in goal achievement,
cost in time and resources, and others.)  Different levels of
intelligence produce different probabilities of success.

Our definition of intelligence also has many
dimensions.  For example, the ability to understand what is
visually perceived is qualitatively different from the ability
to comprehend what is spoken. The ability to reason about
mathematics and logic lies along a different dimension from
the ability to compose music and verse. The ability to choose
wisely involves both the ability to predict the future and the
ability to accurately assess the cost or benefit of predicted
future states.  Along each of these dimensions, there exists a
continuum.  Thus, the space of intelligent systems is a



multidimensional continuum wherein non-intelligent
systems occupy a point at the origin.

At a minimum, intelligence requires the ability to sense
the environment, to make decisions, and to control action.
Higher levels of intelligence may include the ability to
recognize objects and events, to represent knowledge in a
world model, and to reason about and plan for the future. In
advanced forms, intelligence provides the capacity to predict
the future, to perceive and understand what is going on in
the world, to choose wisely, and to act successfully under a
large variety of circumstances so as to survive, prosper, and
replicate in a complex, competitive, and often hostile
environment.

From the viewpoint of control theory, intelligence
might be defined as a knowledgeable "helmsman of
behavior." Intelligence is a phenomenon which emerges as a
result of the integration of knowledge and feedback into a
sensory-interactive, goal-directed control system that can
make plans and generate effective purposeful action to
achieve goals.

From the viewpoint of psychology or biology,
intelligence might be defined as a behavioral strategy that
gives each individual a means for maximizing the likelihood
of success in achieving its goals in an uncertain and often
hostile environment. Intelligence results from the integration
of perception, reason, emotion, and behavior in a sensing,
perceiving, knowing, feeling, caring, planning, and acting
system that can formulate and achieve goals.

2.  REQUIREMENTS FOR UNMANNED
GROUND VEHICLES

The features of intelligence required by an Unmanned
Ground Vehicle (UGV) depends on many factors, such as:

What does the UGV have to do?

Does it simply wander through a lab looking for soft
drink cans?

Does it have to operate outside? Travel long distances?
Perform difficult tasks?

How complex and uncertain is the environment?

Where is it expected to operate?  On well marked
roads? On unmarked roads?  Gravel or dirt roads?  Roads
grown up with weeds and brush?  Off roads?  In tall grass
and weeds?  In woods?  Does it have to cross streams?  Are
there bridges or fords available?  What kind of maps are
available?  How accurate are they?  How recent?

 How dynamic and hostile is the environment?

Are there moving obstacles?  What are the lighting
conditions?  Are obstacles located above or below ground

level?   Are there other agents competing for the goal?  Are
there enemy agents with deadly weapons?

What are costs, risks, and benefits?

What are the stakes?  Life or death?  Win or lose?

What are goals?

Attack?  Defend?  Escape?  Detect and track enemy
targets?  Remain undetected?

What are tasks?

Pick up an object?  Use a tool?  Dig a ditch?  Cross a
stream? Establish an observation post?  Discover an enemy
vehicle?  Analyze enemy behavior?  Identify a face in a
crowd?

What sensors are available?

CCD cameras?  FLIRs ?  LADARs ?  Radars?  Sonars?
Inertial?  GPS?  Beacons?  Reflectors?  Tactile?  Force?
Encoders?

What actuators are to be controlled?

Manipulators?  Grippers?  Power train?  Legs or
Wheels?  Steering?  Brakes?  Switches?

How much is known apriori?

Maps?  Lists of objects and their attributes?  State of
objects?  Behavior of objects?  Rules?

What skills and abilities are required?

Locomotion?  Manipulation?  Perception?
Communication?  Reasoning?  Speech understanding?
Written text understanding?  In what languages?

The above questions are so open ended that it is futile
to try to address all these issues simultaneously.  To focus
our efforts, we select an example of a problem that is
difficult enough to be challenging, well defined enough to
quantitatively measure performance, easy enough that it
probably can be achieved using available technology, and
useful enough that it is worth spending time and resources to
solve it.  The problem that we have selected it that of an
unmanned ground vehicle for military scout operations.

3.  A SCOUT PLATOON EXAMPLE

To illustrate the types of issues that will be addressed,
an example is given below of a seven level hierarchy for a
scout platoon attached to a battalion.   The specific numbers
and functions described in this example are illustrative only.
They are meant only to illustrate how the generic structure
and function of an intelligent system might be instantiated in
the 4D/RCS architecture [2] designed for the Army’s Demo
III experimental unmanned ground vehicle program. [3]



Exact numbers for the actual system are still under
development.

Level 7 -- Battalion

An armored battalion is a unit that consists of a group
of M1 or Bradley companies and a scout platoon.  A
computational node at level 7 of the 4D/RCS architecture
corresponds to a battalion headquarters unit, consisting of a
battalion commander, several company commanders, a scout
platoon leader, and support staff.  (In principle, any or all of
these could be humans or intelligent agent software
processes.  In practice, they are all humans.)

The battalion headquarters unit plans activities and
allocates resources for the armored companies and the scout
platoon attached to the battalion.   Incoming orders to the
battalion are decomposed by the battalion commander into
assignments for the companies and the scout platoon.
Resources and assets are allocated to each subordinate unit,
and a schedule is generated for each unit to maneuver and
carry out assigned operations.  Together, these assignments,
allocations, and schedules comprise a plan.  The plan may be
devised by the battalion commander alone, or in consultation
with his subordinate unit leaders.  The battalion level
planning process may consider the exposure of each unit’s
movements to enemy observation, and the traversability of
roads and cross-country routes.  The battalion commander
typically defines the rules of engagement for the units under
his command and works with his unit leaders to develop a
schedule that meets the objectives of the mission orders
given to the battalion.  In the 4-D/RCS battalion node, plans
are computed for a period of about 24 hours(h) and
recomputed at least once every 2 h, or more often if
necessary.  Desired positions for each of the subordinate
units at about 2 h intervals are computed.

The 4D/RCS architecture provides a surrogate battalion
node in each individual vehicle to perform the functions of
the battalion headquarters unit when the vehicle is not in
direct communication with its chain of command.  The
surrogate node plans activities for the vehicle on a battalion
level time scale and estimates what platoon and section level
operations should be executed to follow that plan.  The
surrogate battalion node considers the exposure of scout
platoon operations to enemy observations, and the
traversability of roads and cross-country routes.

In the surrogate battalion node in each vehicle, the 4-
D/RCS world model maintains a knowledge database
containing a copy of the battalion level knowledge database
that is relevant to that vehicle.  It contains names and
attributes of friendly and enemy forces and of the force
levels required to engage them.  Maps have a range of 1000
km (i.e. more than the distance that a vehicle is likely to
travel in a 24 h day at a Demo III speed of 36 km per hour
(10 m/s)) with a resolution of about 400 m.  Maps describe
the terrain and location of friendly and enemy forces (to the

extent that they are known), and roads, bridges, towns, and
obstacles such as mountains, rivers, and woods.   Battalion
level maps may be updated from intelligence reports.

4-D/RCS sensory processing in the surrogate battalion
node integrates information about the movement of forces,
the level of supplies, and the operational status of all the
units in the battalion, plus intelligence about enemy units in
the area of concern to the company.  This information is
used to update maps and lists in the knowledge database so
as to keep it accurate and current.

The surrogate battalion node also contains value
judgment functions (e.g., calculating the risk of casualties)
that enable the battalion commander to evaluate the cost and
benefit of various tactical options.  To the extent that the
knowledge, skills, and abilities in the surrogate battalion
node is identical with that in the real battalion node, the
surrogate battalion node will make the same decisions as the
real battalion headquarters node.

An operator interface allows human operators (either
on-site or remotely) to visualize information such as the
deployment and movement of forces, the availability of
ammunition, and the overall situation within the scope of
attention of the battalion commander.    The operator can
intervene to change priorities, alter tactics, or redirect the
allocation of resources.

Output from the battalion level through the company
commanders and scout platoon leader comprise input
commands to the company/platoon level.  Armor company
commanders and the scout platoon leader are expected to
issue commands to their respective units, monitor how well
their units are following the battalion plan, and make
adjustments as necessary to keep on plan. New output
commands may be issued at any time, and typically consist
of tasks expected to require about 2 h to complete.

Level 6—Platoon

A scout platoon is a unit that typically consists of ten
HMMWVs or Bradley vehicles organized into one or more
sections.   For the Demo III project, a scout platoon will
consist of six manned HMMWVs and four UGVs.  A 4-
D/RCS node at the Platoon level corresponds to a scout
platoon headquarters unit.  It consists of a platoon
commander plus his/her section leaders. (Any of these could
be humans or intelligent agent software processes, in any
combination.)  The platoon commander and section leaders
plan activities and allocate resources for the sections in the
platoon.  Platoon orders are decomposed into job
assignments for each section.  Resources are allocated, and a
schedule of activities is generated for each section.
Movements are planned relative to major terrain features and
other sections within the platoon.  Inter-section formations
are selected on the basis of tactical goals, stealth
requirements, and other priorities.   At the platoon level,
plans are computed for a period of about 2 h into the future,



and replanning is done about every 10 min, or more often if
necessary.  Section waypoints about 10 min apart are
computed.

The surrogate platoon node in each vehicle performs
the functions of the platoon headquarters unit when the
vehicle is not in direct communication with the chain of
command.  It plans activities for the vehicle on a platoon
level time scale and estimates what vehicle level maneuvers
should be executed in order to follow that plan. Movements
are planned relative to major terrain features and other
vehicles within the platoon.

At the platoon level, the 4-D/RCS world model
symbolic database contains names and attributes of targets,
and the weapons and ammunition necessary to attack them.
Maps with a range of about 100 km (i.e. more than the
distance a platoon is likely to travel in 2 h) and resolution of
about 40 m describe the location of objectives, and routing
between them.    Sensory processing integrates intelligence
about the location and status of friendly and enemy forces.
Value judgment evaluates tactical options for achieving
section objectives.  An operator interface allows human
operators to visualize the status of operations and the
movement of vehicles within the section formation.
Operators can intervene to change priorities and reorder the
plan of operations. Section leaders are expected to sequence
commands to their respective sections, monitor how well
their sections are following the platoon plan, and make
adjustments as necessary to keep on plan.   The output from
the platoon level through the section leaders are commands
issued to sections to perform maneuvers and engage enemy
units in particular sectors of the battlefield.  Output
commands may be issued at any time, but typically are
planned to change only about once every 5 min.

Level 5—Section

A scout section is a unit that consists of a group of
individual scout vehicles such as HMMWVs and UGVs.  A
4-D/RCS node at the section level corresponds to a section
leader and vehicle commanders (humans or intelligent
software agents).   The section leader assigns duties to the
vehicles in his section and coordinates the vehicle
commanders in scheduling cooperative activities of the
vehicles within a section.  Orders are decomposed into
assignments for each vehicle, and a schedule is developed
for each vehicle to maneuver in formation within assigned
corridors taking advantage of local terrain features and
avoiding obstacles.  Plans are developed to conduct
coordinated maneuvers and to perform reconnaissance,
surveillance, or target acquisition functions.   At the section
level, plans are computed for about 10 min into the future,
and replanning is done about every 1 min, or more often if
necessary.  Vehicle waypoints about 1 min apart are
computed.

The surrogate section node in each UGV performs the
functions of the section command unit when the UGV is not
in direct communication with the section commander.  The
surrogate node plans activities for the UGV on a section
level time scale and estimates what vehicle level maneuvers
should be executed in order to follow that plan.

At the section level, the 4-D/RCS world model
symbolic database contains names, coordinates, and other
attributes of other vehicles within the section, other sections,
and potential enemy targets.  Maps with a range of about 10
km and a resolution of about 30 m are typical.  Maps at the
section level describe the location of vehicles, targets,
landmarks, and local terrain features such as buildings,
roads, woods, fields, streams, fences, ponds, etc. Sensory
processing determines the position of landmarks and terrain
features, and tracks the motion of groups of vehicles and
targets.  Value judgment evaluates plans and computes cost,
risk, and payoff of various alternatives.  An operator
interface allows human operators to visualize the status of
the battlefield within the scope of the section, or to intervene
to change priorities and reorder the sequence of operations
or selection of targets. Vehicle commanders issue commands
to their respective vehicles, monitor how well plans are
being followed, and make adjustments as necessary to keep
on plan.  Output commands to individual vehicles to engage
targets or maneuver relative to landmarks or other vehicles
may be issued at any time, but on average are planned for
tasks that last about 1 min.

Level 4—Individual vehicle

The vehicle is a unit that consists of a group of
subsystems, such as locomotion, attention, communication,
and mission package.  A manned scout vehicle may have a
driver, vehicle commander, and a lookout.  Thus, a 4-D/RCS
node at the vehicle level corresponds to a vehicle
commander plus subsystem planners and executors.  The
vehicle commander assigns jobs to subsystems and
schedules the activities of all the subsystems within the
vehicle.  A schedule of waypoints is developed by the
locomotion subsystem to avoid obstacles, maintain position
relative to nearby vehicles, and achieve desired vehicle
heading and speed along the desired path on roads or cross-
country.  A schedule of tracking activities is generated for
the attention subsystem to track obstacles, other vehicles,
and targets.  A schedule of activities is generated for the
mission package and the communication subsystems.
Waypoints and task activities about 5 s apart out to a
planning horizon of 1 min are replanned every 5 s, or more
often if necessary.

At the vehicle level, the world model symbolic
database contains names (identifiers) and attributes of
objects -- for example, the size, shape, and surface
characteristics of roads, ground cover, or objects such as
rocks, trees, bushes, mud, and water.  Maps are generated
from on-board sensors with a range of about 500 m and



resolution of 4 meters.  These maps are registered and
overlaid with 40 meter resolution data from Section level
maps.  Maps represent object positions (relative to the
vehicle) and dimensions of road surfaces, buildings, trees,
craters, and ditches.  Sensory processing measures object
dimensions and distances, and computes relative motion.
Value judgment evaluates trajectory planning and sensor
dwell time sequences.  An operator interface allows a human
operator to visualize the status of operations of the vehicle,
and to intervene to change priorities or steer the vehicle
through difficult situations.  Subsystem controller executors
sequence commands to subsystems, monitor how well plans
are being followed and modify parameters as necessary to
keep on plan.  Output commands to subsystems may be
issued at any time,  but typically are planned to change only
about once every 5 s.

Level 3—Subsystem level

Each subsystem node is a unit consisting of a controller
for a group of related Primitive level systems such as
Primitive mobility, Gaze control, Communication, and
Mission package sub-subsystems.  A 4-D/RCS node at the
Subsystem Level assigns jobs to each of its Primitive sub-
subsystems and coordinates the activities among them.  A
schedule of Primitive mobility waypoints and Primitive
mobility actions is developed to avoid obstacles.  A schedule
of pointing commands is generated for aiming cameras and
sensors.  A schedule of messages is generated for
communications, and a schedule of actions is developed for
operating the mission package sub-subsystems.  The
Primitive mobility way points are about 500 ms apart out to
a planning horizon of about 5 s in the future.  A new plan is
generated about every 500 ms.

At the Subsystem level, the world model symbolic
database contains  names and attributes of environmental
features such as road edges, holes, obstacles, ditches, and
targets.  Vehicle centered maps with a range of 50 meters
and resolution of 40 cm are generated using data from range
sensors. These maps represent the shape and location of
terrain features and obstacle boundaries.  The Demo III
LADAR and stereo cameras measure position and range (out
to about 50 m) of surfaces in the environment.  Sensory
processing computes surface properties such as dimensions,
area, orientation, texture, and motion.  Value judgment
supports planning of steering and aiming computations, and
evaluates sensor data quality.  An operator interface allows a
human operator to visualize the state of the vehicle, or to
intervene to change mode or interrupt the sequence of
operations.  Subsystem executors compute at a 5 Hz clock
rate.  They sequence commands to primitive systems,
monitor how well plans are being followed, and modify
parameters as necessary to keep on plan.  Output commands
to Primitive sub-subsystems may be issued at any 200 ms
interval, but typically are planned to change on average
about once every 500 ms.

Level 2— Primitive level

Each node at the primitive level is a unit consisting of a
group of controllers that plan and execute velocities and
accelerations to optimize dynamic performance of
components such as steering, braking, acceleration, gear
shift, camera pointing, and weapon loading and pointing,
taking into consideration dynamical interaction between
mass, stiffness, force, and time. Communication messages
are encoded into words and strings of symbols.  Velocity and
acceleration set points are planned every 50 ms out to a
planning horizon of 500 ms.

The world model symbolic database contains names
and attributes of state variables and features such as target
trajectories and edges of objects.   Maps are generated from
camera data.  Five meter maps have a resolution of about 4
cm.   Driving plans can be represented by predicted tire
tracks on the map, and visual attention plans by predicted
fixation points in the visual field.

Sensory processing computes linear image features
such as occluding edges, boundaries, and vertices and
detects strings of events.  Value judgment cost functions
support dynamic trajectory optimization.  An operator
interface allows a human operator to visualize the state of
each controller, and to intervene to change mode or override
velocities.  Primitive level executors keep track of how well
plans are being followed, and modify parameters as
necessary to keep within tolerance.  Primitive executors
compute at a 20 Hz clock rate.  Output commands are issued
to the Servo level to adjust set points for vehicle steering,
velocity, and acceleration or for pointing sensors or weapons
platforms.  Output commands are issued every 50 ms.

Level 1—Servo level

Each node at the servo level is a unit consisting of a
group of controllers that plan and execute actuator motions
and forces, and generate discrete outputs. Communication
message bit streams are produced. The servo level
transforms commands from component to actuator
coordinates and computes motion or torque commands for
each actuator.  Desired forces, velocities, and discrete
outputs are planned for 20 ms intervals out to a planning
horizon of 50 ms.

The world model symbolic database contains values of
state variables such as actuator positions, velocities, and
forces, pressure sensor readings, position of switches, and
gear shift settings.  Sensory processing detects events, and
scales and filters data from individual sensors that measure
position, velocity, force, torque, and pressure.  Sensory
processing also computes pixel attributes in images such as
spatial and temporal gradients, stereo disparity, range, color,
and image flow.  An operator interface allows a human
operator to visualize the state of the machine, or to intervene
to change mode, set switches, or jog individual actuators.
Executors servo actuators and motors to follow planned



trajectories.  Position, velocity, or force servoing may be
implemented, and in various combinations.  Servo executors
compute at a 200 Hz clock rate.  Motion output commands
to power amplifiers specify desired actuator torque or power
every 5 ms .  Discrete output commands produce switch
closures and activate relays and solenoids.

The above example illustrates how the 4-D/RCS
multilevel hierarchical architecture assigns different
responsibilities and duties to various levels of the hierarchy
with different range and resolution in time and space at each
level.  At each level, sensory data is processed, entities are
recognized, world model representations are maintained, and
tasks are decomposed into parallel and sequential subtasks,
to be performed by cooperating sets of agents.  At each
level, feedback from sensors reactively closes a control loop
allowing each agent to respond and react to unexpected
events.

At each level, there is a characteristic range and
resolution in space and time, a characteristic bandwidth and
response time, and a characteristic planning horizon and
level of detail in plans.  The 4-D/RCS architecture thus
organizes the planning of behavior, the control of action, and
the focusing of computational resources such that functional
processes at each level have a limited amount of
responsibility and a manageable level of complexity.

4.  DEMO III CONTROL HIERARCHY
Figure 1 is a high-level block diagram of the first five

levels in the 4-D/RCS architecture for Demo III.  On the
right, Behavior Generation modules decompose high level
mission commands into low level actions.  The text beside
the Planner and Executor at each level indicates the planning
horizon, replanning rate, and reaction latency, and the rate at
which new commands are typically generated at each level.
Each planner has a world model simulator that is appropriate
for the problems encountered at its level.

In the center of Figure 1, each map as a range and
resolution that is appropriate for path planning at its level.
At each level, there are symbolic data structures and
segmented images with labeled regions that describe entities,
events, and situations that are relevant to decisions that must
be made at that level.  On the left is a sensory processing
hierarchy that extracts information from the sensory data
stream that is needed to keep the world model knowledge
database current and accurate.

At the bottom of Figure 1 are actuators that act on the
world and sensors that measure phenomena in the world.
The Demo III vehicles will have a variety of sensors
including a laser range imager (LADAR), stereo CCD
(charge coupled device) cameras, stereo forward looking
infra red (FLIR) devices, a color CCD, a vegetation

penetrating radar, GPS (Global Positioning System), an
inertial navigation package, actuator feedback sensors, and a
variety of internal sensors for measuring parameters such as
engine temperature, speed, vibration, oil pressure, and fuel
level.  The vehicle also will carry a Reconnaissance,
Surveillance, and Target Acquisition (RSTA) mission
package that will include long-range cameras and FLIRs, a
laser range finder, and an acoustic package.

In Figure 1, the bottom (Servo) level has no map
representation.  The Servo level deals with actuator
dynamics and reacts to sensory feedback from actuator
sensors.  The Primitive level map has range of 5 m with
resolution of 4 cm.  This enables the vehicle to make small
path corrections to avoid bumps and ruts during the 500 ms
planning horizon of the Primitive level.  The Primitive level
also uses accelerometer data to control vehicle dynamics and
prevent roll-over during high speed driving.

The Subsystem level map has range of 50 m with
resolution of 40 cm.   This map is used to plan about 5 s into
the future to find a path that avoids obstacles and provides a
smooth and efficient ride.  The Vehicle level map has a
range of 500 m with resolution of 4 m.  This map is used to
plan paths about 1 min into the future taking into account
terrain features such as roads, bushes, gullies, or tree lines.
The Section level map has a range of 5000 m with resolution
of about 40 m.  This map is used to plan about 10 m into the
future to accomplish tactical behaviors.  Higher level maps
(not shown in Figure 1) are used to plan section and platoon
missions lasting about 2 and 24 h respectively.  These are
derived from military maps and intelligence provided by the
digital battlefield database.

4D/RCS planners are designed to generate new plans
well before current plans become obsolete.  Thus, action can
always take place in the context of a recent plan, and
feedback through the executors can close reactive control
loops using recently selected control parameters.  To meet
the demands of Demo III, the 4D/RCS architecture specifies
that replanning should occur within about one-tenth of the
planning horizon at each level (e.g.,  replanning at the
Vehicle level will occur about every 5 s.)

   Executors can react to sensory feedback even faster
(e.g., reaction at the Vehicle level will occur within 500 ms).
If the Executor senses an error between its output
CommandGoal  and the predicted state (status from the
subordinate BG Planner) at the GoalTime, it may react by
modifying the commanded action so as to cope with that
error.  This closes a feedback loop through the Executor at
that level within the specified reaction latency.



Figure 1.    Five levels of the 4-D/RCS architecture.  On the right are Planner and Executor modules.  In the center are maps
for representing terrain features, road, bridges, vehicles, friendly/enemy positions, and the cost and risk of traversing various
regions.  On the left are Sensory Processing functions, symbolic representations of entities and events, and segmented images
with labeled regions.
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The type of Executor reaction depends on the size and
nature of the detected error.  If the error is small, the
Executor may simply modify its CommandedAction in a
manner designed to reduce the error.  For example, if the
status reported from the subordinate planner indicates that
the vehicle is going to arrive at the goal point late, the
Executor might modify its CommandedAction to speed up
or delete some low priority activities.  However, if the error
is out of range, the Executor may select a stored emergency
plan from an exception handler, substitute it for the current
plan, and modify its CommandedAction and CommandGoal
to its subordinate planner appropriately.   For example, an
event such as the discovery of an unexpected obstacle in the
AM planned path (generated by the Vehicle Planner) may
cause the AM planner to make a plan that deviates
significantly from its commanded goal.  In this case, the
Vehicle level Executor may modify its CommandedAction
in a manner designed to buy time for the Vehicle level
Planner to generate a new AM plan.  For example, it may
command the AM level to reduce speed or stop and direct
AM driving cameras or RSTA sensors to collect information
about the obstacle while a new AM plan is being generated
by the Vehicle level planner.  All of this Executor response
should take place within the 500 ms reaction latency of the
Vehicle level Executor.

Typically, evoking an emergency plan will cause the
Executor to request its Planner to immediately begin a new
replanning cycle.   As shown in Figure 1, the period required
for replanning at the Vehicle level is 5 s.  The replanning
period at the AM level is 0.5 s.  Thus, the emergency plan
evoked by the Vehicle level Executor can handle the
problem of what the AM level should plan to do over the
next 5 s while the Vehicle level planner generates a new AM
plan out to its 1 min planning horizon.

5.  GENERIC BEHAVIORS OF SCOUT
VEHICLES

Navigate from A to B

Point A may be several km from point B.  What kind of
roads are available?  How much traffic will be present?  A
scout vehicle may be required to stay off of roads, to
maneuver through hilly fields and woods, and cope with
fences, washes, and streams.

Avoid obstacles

The simplest obstacles are those that stick up from flat
ground and are not obscured by foliage.  The most difficult
are ditches that are obscured by foliage.  It is important to be
able to distinguish grass and weeds that the vehicle can drive
through from grass and weeds that conceal obstacles.  In
some cases, the only way to tell the difference is to drive
slowly and stop when the vehicle encounters stiff resistance,

or when the front wheels drop over the edge of a ditch, or
sink into the mud.

Compute terrain attributes and classify terrain
features

The first requirement is to map the terrain geometry
and topology.  The second is compute attributes such as
color, texture, slope, size, and shape of regions of terrain.
The third is to compare attributes of terrain regions with
class attributes so as to classify terrain regions as road, dirt,
grass, rocks, brush, trees, and bogs.

Drive autonomously

Driving autonomously covers a wide range of
situations.  Driving on an empty freeway is quite different
from driving in downtown Istanbul.  Driving with traffic on
a freeway requires the ability to recognize lane markings,
detect and track other vehicles, detect and avoid obstacles in
the roadway, and obey road signs.

Driving at normal human speeds on narrow roads and
cross country is more difficult.  Road edges may be poorly
defined and lane markings often do not exist.  There may be
bumps or ditches that will damage the vehicle if struck at
high speeds.

Autonomous driving in suburban or downtown streets
requires the ability to detect and predict the behavior of
pedestrians, other vehicles, to read road signs, and respond
to traffic signals, including hand signals from humans.

In driving cross country, there is no guarantee that a
chosen path is even feasible.  There may be hidden obstacles
such as ditches, streams, fences, hills, brush, or woods that
are impassable.  The vehicle must be able to back up, and try
alternate routes when the planned path is blocked.

Classify landmarks, objects, places, and situations

It is easy to get lost.  GPS is not always available.
Critical path waypoints may not appear on a map, or may be
incorrectly represented.  The unexpected appearance of an
enemy may require immediate action.  The ability to
recognize a likely spot for an enemy sniper in time to take
evasive action may be critical to survival.

Recognize and track other vehicles, avoid collisions

On-coming traffic on narrow roads is a major problem.
One must drive very close to oncoming vehicles to stay on
the road.  One must estimate whether the oncoming vehicle
is in its own lane on its own side of the road, and whether
there is room on the road for two vehicles to safely pass.  To
do that one must detect the road edges at a great distance and
measure the relative position of the on-coming vehicle
between the road edges.  There is very little margin for error
in space or time.



Predict behavior of pedestrians and other vehicles
in traffic

Driving in traffic requires the self vehicle to not only
detect, but to predict where pedestrians and other vehicles
will be in the future.  For example, on a two lane road, on-
coming traffic may consist of one vehicle passing another.
The self vehicle must predict whether the on-coming vehicle
in the self vehicle lane will return to its own side before a
head-on collision occurs.  On a one lane road, it may be
necessary for the self vehicle to pull over and let an on-
coming vehicle pass, or wait for the on-coming vehicle to
pull over so that the self vehicle can pass.  On a narrow
mountain road, it may be necessary to back up to a place
where it is wide enough for two vehicles to pass each other.

Learn from experience and from human instructors

Adjust behavior to situation and priorities.  Use reward
and punishment from human instructors to learn skills and
behaviors.  Use experience from multiple simulated
scenarios to learn from experience.

6.  METRICS AND MEASURES
A metric is a unit of measure.  Examples include the

meter, the second, the kilogram, the volt, Plank’s constant,
and Avogadro’s number.

Measurements are made by comparing something
against the unit of measure.  A measurement can be made of
the length of the coastline of the British Isles, the height of
the Eiffel Tower, the mass of the Queen Mary, the length of
a day, or the charge on an electron.   There are many
parameters related to measurement including accuracy,
precision, resolution, observability, and uncertainty.

What is it about intelligent systems that can be
measured?   If an intelligent system is defined as a system
with the ability to act appropriately in an uncertain
environment, then we can measure the appropriateness of its
behavior.   And, if appropriate behavior is defined as that
which increases the likelihood of achieving a goal, then the
ability of a system to achieve goals in an uncertain
environment is a measure of intelligence.

At least three things are required to measure the ability
of a system to achieve goals.  First, we need to define the
goals and set criteria for achieving them.  Second, we need
to provide an environment in which to make the
measurements.  Third, we need to define a procedure for
scoring performance that takes into account the difficulty of
the goals, and the complexity and uncertainty of the
environment

What kinds of measurements can be used to measure
performance?  One possibility is to develop one or more
benchmark tests, and measure speed, accuracy, efficiency,

level of difficulty, and cost.  These measurements can then
be weighted for importance and summed to provide an
overall score.

Another approach is to devise competitions wherein
different intelligent systems can compete against each other
for a score.  Competitions can involve direct physical
interactions such as in football or tennis, measurements of
time as in skiing or bobsleding, or competitions that consider
both style and difficulty as in ice skating, diving, and
gymnastics.  Again, performance measurements can be
weighted for importance and summed to provide a score.

What kind of metric can be used to measure the
performance of an intelligent systems?  One possible metric
is the performance of a human being.  Another possible
metric is the performance of a standard baseline system.  In
either case, the performance of the intelligent system under
test can be compared with the performance of a human being
(or baseline system) under similar conditions.  The
difference in performance, the level of difficulty of the test,
and the weighting for importance of the test all combine to
give a score.

Measures of performance can be devised for subsystem
performance, individual system performance, or group or
team performance.  For example, for subsystems, benchmark
tests can be devised to measure the performance of sensory
processing algorithms, world model predictors, or behavior
generation planners.  One might measure the difference
between predictions and observations, or the difference
between plans and actions.  Benchmark tests can also be
devised to measure the accuracy of knowledge about the
world.   For example, one can measure the difference
between perceived terrain geometry derived from sensors
and ground truth from calibrated test courses.  One can
measure the latency between requesting and receiving
information about the world.  Individual system performance
can be measured and scored against standard tasks that are
typically required of human scout vehicles.  Similarly, team
performance can be measured and scored in war games
wherein opposing forces are tested in battle fighting
scenarios.

What is needed?

Calibrated test facilities are needed to test the
performance of sensors and systems in the field under
realistic conditions.  High fidelity simulation facilities are
needed to generate repeatable test data for software
debugging and testing.  Data from calibrated sensors, mixed
with a known noise, and accompanied by ground truth are
needed to test sensory processing and world modeling
algorithms.  World model data with values assigned to
entities and events is needed to test behavior generation
planning and control algorithms.

Large scale test and training facilities are needed to test
performance of systems in large scale operations and to



develop tactics and training for integration of autonomous
systems with manned forces.  A wide variety of benchmark
tests and competitions are needed to test intelligent system
performance under a wide variety of environmental
conditions.   A rigorous regimen of testing, debugging, and
reliability engineering will be needed before intelligent
systems become robust enough to operate reliably under a
wide variety of operational conditions.
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ABSTRACT

One approach to measuring the performance of intelligent systems
is to develop standardized or reproducible tests.  These tests may
be in a simulated environment or in a physical test course.   The
National Institute of Standards and Technology is developing a test
course for evaluating the performance of mobile autonomous
robots operating in an urban search and rescue mission.     The test
course is designed to simulate a collapsed building structure at
various levels of fidelity. The course will be used in robotic
competitions, such as the American Association for Artifical
Intelligence (AAAI) Mobile Robot Competition and the RoboCup
Rescue. Designed to be highly reconfigurable and to accommodate
a variety of sensing and navigation capabilities, this course may
serve as a prototype for further development of performance
testing environments.   The design of the test course brings to light
several challenges in evaluating performance of intelligent
systems, such as the distinction between “mind” and “body” and
the accommodation of high-level interactions between the robot
and humans.   We discuss the design criteria for the test course and
the evaluation methods that are being planned.

KEYWORDS:  performance metrics, autonomous robots, mobile
robots, urban search and rescue

1. INTRODUCTION

The Intelligent Systems Division of the National
Institute of Standards and Technology is
researching how to measure the performance of
intelligent systems.   One approach being
investigated is the use of test courses for
evaluating autonomous mobile robots operating in
an urban search and rescue scenario.   Urban
search and rescue is an excellent candidate for
deploying robots, since it is an extremely
hazardous task.   Urban Search and Rescue
(USAR) refers to rescue activities in collapsed
building or man-made structures after a
catastrophic event, such as an earthquake or a
bombing.  Japan has an initiative, based on the
RoboCup robots, that focuses on multi-agent

approaches to the simulation and management of
major urban disasters [1].   The real-world utility
and manifold complexities inherent in this domain
make it attractive as a “challenge” problem for the
mobile autonomous robots community.  For a
description of the issues pertaining to intelligent
robots for search and rescue, see [2].

Figures 1 and 2 illustrate the type of
environment that a rescuer has to confront with a
collapsed building.    There is totally unstructured
rubble, which may be unstable and contain many
hazards.  Victims’ locations and conditions must
be established quickly.   Every passing minute
reduces the chances of saving a victim.

This type of environment stresses the
mobility, sensing, and planning capabilities of
autonomous systems.   The robots must be able to
crawl over rubble, through very narrow openings,
climb stairs or ramps, and be aware of the
possibility of collapses of building sections.   The
sensors are confronted with a dense, variable, and
very rich set of inputs.   The robot has to ascertain
how best to navigate through the area, avoiding
hazards, such as unstable piles of rubble or holes,
yet maximizing the coverage.  The robot also has
to be able to detect victims and ideally, determine
their condition and location.    The robot has to
make careful decisions, planning its path and
strategy, and taking into account the time
constraints.

A near-term measure of success for robots in a
search and rescue mission would be to scout a
structure, map its significant openings, obstacles,
and hazards, and locate victims.  The robots
would communicate with victims, leaving them



with an emergency kit that contains a radio, water,
and other supplies, and transmit a map, including
victim locations and conditions, to human
supervisors.  Humans would then plan the best
means of rescuing the victims, given the
augmented situational awareness.

Search and rescue missions are not amenable
to teleoperation due to the fact that most of the
radio frequencies are reserved by emergency
management agencies.   Obstructions and
occlusions also diminish the effectiveness of radio
transmissions.  Tethers are not typically practical
in the cluttered environment in which these robots
must operate.

2. URBAN SEARCH AND RESCUE AS A ROBOTIC
CHALLENGE

A search and rescue mission is extremely
challenging and dangerous for human experts.
This is a highly unstructured and dynamic
environment, where the mission is time critical.
Very little a priori information about the
environment or building may exist.  If any exists,
it will almost certainly be obsolete, due to the
collapse.

Urban Search and Rescue is therefore
attractive as a mission framework in which to
measure intelligence of autonomous robots.    The
high degree of variability and unpredictability
demand high adaptation and sophisticated
decision-making skills from the robots.  Robots
will need to quickly and continually assess the
situation, both in terms of their own mobility and
of the likelihood of locating more victims.  USAR
missions are amenable to cooperation, which can
be considered another higher-level manifestation
of intelligence.   We propose that any robot or
team of robots that is able to successfully and
efficiently carry out USAR missions would be
considered intelligent by most standards.

In the following sections, we will briefly
discuss how USAR missions tax specific
components of an intelligent system.

Figure 1: Partially Collapsed Building from
Turkey Earthquake

Figure 2: Totally Collapsed Building from
Turkey Earthquake

2.1 MOBILITY

As can be seen from Figures 1 and 2, the mobility
requirements for search and rescue robots are
challenging.  They must be able to crawl over
piles of rubble, up and down stairs and steep
ramps, through extremely small openings, and
take advantage of pipes, tubes, and other
unconventional routes.  The surfaces that they
must traverse may be composed of a variety of
materials, including carpeting, concrete blocks,
wood, and other construction material.   The
surfaces may also be highly unstable.  The robot
may destabilize the area if it is too heavy or if it
bumps some of the rubble.   There may be gaps,



holes, sharp drop-offs, and discontinuities in the
surfaces that the robot traverses.

2.2 SENSING

In order to be able to explore an USAR site and
successfully navigate in this environment, the
robot’s sensing and perception must be highly
sophisticated.    Lighting will be variable and may
be altogether missing.   Surface geometry and
materials may absorb emitted signals, such as
acoustic, or they may reflect them.  For truly
robust perception, the robots should emulate
human levels of vision.

The presence of victims may be manifested
through a variety of signals.   The stimuli that the
robots have to be prepared to process include

• Acoustic – victims may be calling out,
moaning softly, knocking on walls, or
otherwise generating sounds.  There will be
other noises in the environment due to shifting
materials or coming from other USAR
entities.

• Thermal – a body will emit a thermal
signature.  There may be other sources of heat,
such as radiators or hot water.

• Visual – a multiplicity of visual recognition
capabilities, based on geometric, color,
textural, and motion characteristics, will be
exercised.  Recognizing human
characteristics, such as limbs, color of skin,
clothing is important.  Motion of humans,
such as waving, must be detected.   Confusing
visual cues may come from wallpaper,
upholstery or curtain material, strewn
clothing, and moving objects, such as curtains
blown by a breeze.

2.3 KNOWLEDGE REPRESENTATION

In order to support the sophisticated planning and
decision-making that is required, the robot must
be able to leverage a rich knowledge base.   This
entails both a priori expertise or knowledge, such
as how to characterize the traversability of a
particular area, as well as gained information,
such as a map that is built up as it explores.  It

must develop rich three-dimensional spatial maps
that contain areas it or other robots have and
haven’t yet seen, victim and hazard locations, and
potential quick exit routes.   The maps from
several robots may need to be shared and merged.

A variety of types of knowledge will be
required in order to successfully accomplish
search and rescue tasks.   Higher-level
knowledge, which may be symbolic, includes
representations of what a “victim” is.     This is a
multi-facetted definition, which includes the many
manifestations that imply a victim’s presence.

2.4 PLANNING

An individual robot must be able to plan how to
best cover the areas it has been assigned.   The
time-critical nature of its work must be taken into
account in its planning.   It may need to trade off
between delving deeper into a structure to find
more victims and finding a shortcut back to its
human supervisors to report on the victims it has
already found.

2.5 AUTONOMY

As mentioned above, it is not currently practical
to assume that the robots will be in constant
communication with human supervisors.
Therefore, the robots must be able to operate
autonomously, making and updating their plans
independently.    In some circumstances, there
may be limited-bandwidth communications
available.  In this case, the robots may be able to
operate under a mixed-initiative mode, where they
have high-level interactions with humans.  The
communications should be akin to those that a
human search and rescue worker may have with
his or her supervisor.  It definitely would not be of
a teleoperative nature.

2.6 COLLABORATION

Search and rescue missions seem ideally suited
for deploying multiple robots in order to
maximize coverage.   An initial strategy for
splitting up the area amongst the robots may be
devised.  Once they start executing this plan, they
will revise and adapt their trajectories based on



the conditions that they encounter.   Information
sharing between the robots can improve their
efficiency.  For example, if a robot detects that a
particular passageway that others may need to use
is blocked, it would communicate that to its peers.
The robots should therefore collaborate and
cooperate as they jointly perform the mission.
They may be centrally or decentrally controlled.
The robots themselves may all have the same
capability, or they may be heterogeneous,
meaning that they have different characteristics.
Heterogeneous robot teams may apply the
marsupial approach, where a larger robot
transports smaller ones to their work areas and
performs a supervisory function.

3. MEASURING THE PERFORMANCE OF USAR
ROBOTS

We have described briefly the requirements for
autonomous urban search and rescue robots.  We
will now discuss approaches to testing their
capabilities in achieving a USAR mission.

The approach being taken by the upcoming
USAR robot competitions that will use the NIST
test course is based on a point system.   The goal
of the robots is to maximize the number of
victims and hazards located, while minimizing the
amount of time to do so and the disruption of the
test course.

Specifically, the AAAI Mobile Robot competition
[1] will use Olympic-style scoring. Each judge
will have a certain number of points that can be
awarded based on their measuring certain
quantitative and qualitative metrics.    Robots
receive points for

• Number of victims located
• Number of hazards detected
• Mapping of victim  and hazard locations
• Staying within time limits
• Dropping off a package to victims

representing first aid, a radio, or food and
water

• Quality of communications with humans
• Tolerance of communications dropout

They lose points for

• Causing damage to the environment, victims,
or themselves (e.g., destabilizing a structure)

• Failing to exit within time limits

In certain sections of the test course, robots
are allowed to have high-level communications
with humans.  These communications must be
made visible to the judges.  Metrics for evaluating
the quality of the communications include
"commands" per minute and/or bandwidth used.
Fewer commands per minute and less bandwidth
per minute receive better scores.   Tolerance of
communications disruption is an important
capability and will be given greater difficulty
weighting.    A team may request that the judges
simulate communication disruptions at any point
in order that the robots demonstrate how to
recover.  Examples of recovery would be to move
to a location where there is better chance of
communication, making decisions autonomously
instead of consulting humans, or utilizing
companion robots to relay the information to the
humans.

For teams consisting of multiple robots, the
advantage of cooperating or interacting robot
must be demonstrated.  This can be either in
performing the task better, or performing the task
more economically. Multi-robot teams should
have a time speedup that is greater than linear, or
may be able to perform the tasks with less overall
power consumption or cost.  The scoring will
factor in the number of robots, types of robots,
types or mixture of sensors, etc., in determining
the performance of a team.

The RoboCup Rescue competition, sponsored by
Robot World Cup Initiative, takes an evaluation
benchmarking approach.  Initially, there are 3
benchmark tasks.  The current tasks are victim
search, victim rescue, and a combination of victim
search and rescue.  Additional ones will be added
as the competition and participants evolve.  The
RoboCup Rescue includes a simulation
infrastructure in which teams can compete, as
well as the use of the NIST test course.



Their evaluation metrics are still under
development.  Examples of criteria that have been
published on their web site [4] include:

• Recovery rate, expressed as percentage of
victims identified versus number under the
debris.

• Accuracy rate, computed as the number of
correctly identified victims divided by the
total number of identified victims.

• Operational loading, which is the number of
operations that a human has to perform in
order to enable to robots to perform their
tasks.

• If rescuing victims, the total time it takes to
rescue all victims.

• Total damage caused to victims in attempting
to rescue them.

4. THE TEST COURSE DESIGN

The test course which NIST designed for the
AAAI Mobile Robot Competition was designed
with three distinct areas of increasing
verisimilitude and difficulty. Overall, the course is
meant to represent several of the sensing,
navigation, and mapping challenges that exist in a
real USAR situation.   As discussed above, these
are challenges that correlate well with general
characteristics desirable in mobile, autonomous
robots that may operate in other types of missions.
In the design of the course, tradeoffs were made
between realism and reproducible and controlled
conditions.   In order to be able to evaluate the
performance of robots in specific skill areas,
certain portions of the course may look unrealistic
or too simplified.   This idealization is necessary
in order to abstract the essential elements being
exercised, such as a the ability to deal with a
particular sensing challenge.

Given the controlled conditions that the test
course provides, it is possible to have multiple
robots or teams face the identical course and have
their performances compared.  This should yield

valuable information about what approaches to
robotic sensing, planning, and world modeling
work best under certain circumstances.

The course is highly modular, allowing for
reconfiguration before and during a competition.
Judges may swap wall panels that are highly
reflective for some that are fabric-covered, for
example, or victims may be relocated.    This
reconfigurability can serve to avoid having robot
teams “game” the course, i.e., program their
robots to have capabilities tailored to the course
they’ve seen previously.   The reconfigurability
can serve to provide more realism as well.   A
route that the robot used previously may become
blocked, forcing the robot to have to find an
alternative way.

The three areas of the course are described
below.  Note that the use of color in the names of
the section is for labeling purposes only and does
not mean that the courses are primarily colored in
their namesake color.    A representative
schematic of the test course is shown in Figure 3,
at the end of this paper.

4.1 YELLOW COURSE

Given the fact that participating teams, at least
initially, will primarily be from universities that
may not have access to new agile robotic
platforms, one design requirement was to have an
area within the course where the mobility
challenges are minimal.   We call this area the
“Yellow course.”    The floor of the yellow course
is flat and of uniform material.   Passageways are
wide enough to permit large robots, up to about 1
meter diameter, to pass easily.

Yet the Yellow course allows teams with
sophisticated perception and planning to exercise
their robots’ capabilities.     Some sensing
challenges are as difficult in this section as in the
others.   There will be highly reflective and highly
absorbent material on walls.  Certain wall panels
will be clear Plexiglas, whereas others will be
covered in brightly patterned wallpaper.  Some
areas may be dimly lit or accessible only from one



direction. Victims will be represented in all
modalities (i.e., acoustically, visually, through
motion, thermally, etc.)  and may be hidden from
view under furnishings or in closed areas.

4.2 ORANGE COURSE

The Orange course is of intermediate difficulty.
A second story is introduced, and there are routes
that only smaller robots may pass through.   The
robots may have to climb stairs or a ramp in order
to reach victims.   Flooring materials of various
kinds, such as carpeting, tile, and rubber, are
introduced.   Hazards, such as holes in the floor,
exist.   In order to be effective, the robot will have
to plan in a three-dimensional space.  Larger
robots will be able to navigate through some
portions of this course, but not all.

4.3 RED COURSE

The Red course poses the most realistic
representation of a collapsed structure.   We do
not anticipate that any of the contestants will be
able to successfully complete the red course in the
first or perhaps even second years.  However, this
section provides a performance goal for the teams
to strive for.    In the Red section, piles of rubble
abound, lighting is minimal or non-existent, and
passageways are very narrow.  The course is
highly three-dimensional, from a mapping
perspective.   Not only are there two floors, but
the rubble piles that the robot has to traverse may
need to be mapped as well.    Passageways under
the rubble or through pipes may have to be used
by the robots to reach certain areas or to get closer
to victims.   There are some portions of this
course that can be traversed by the larger class of
robots, but they would not be able to reach most
of the victims.  Larger robots would be best suited
in marsupial configurations in this area.

5. CONCLUSION

An Urban Search and Rescue application for
autonomous mobile robots poses several
challenges that can be met only by highly
intelligent systems.    The variability, risk, and
urgency inherent in USAR missions makes this a
good framework in which to begin measuring

performance in controlled and reproducible
situations.  We believe that the test course we are
developing can serve to elucidate performance
measures for overall systems, as well as for
components of intelligent systems.
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Abstract

For highly agile autonomous systems, the dynamics plays a central role in the develop-

ment of planners and feedback controllers to achieve a certain desired task. Trajectory

plans that do not satisfy the system dynamics and constraints have a small likelihood

for implementation without placing undue demands on the controllers. Coordinated con-

trol of such systems in groups becomes even more challenging because of the potential of

dynamic interaction between members of the group, distributed nature of sensing, compu-

tation, and control. Among other desirable criteria, such as low energy consumption and

constraint satisfaction, a measure of performance for robotic systems is compliance with

its own dynamics and those of the other co-players in the group.

In this paper, we propose a benchmark problem for controller performance evaluation

of a group of mobile robots. This benchmark experiment is inspired by a platoon of

autonomous vehicles with the goal to change its formation over time. The objective is

to obtain these formation changes while minimizing certain meaningful cost criteria. We

assume that the physical models that describe the system are subject to errors. The sensor

is not perfect and the structure of the controller has been selected by a user. For such a

system, we can obtain the theoretically optimum trajectory with a measure of the cost.

This cost can then be compared to the actual cost during hardware implementation on an

experiment set up.

∗AssociateProfessor,∗ ∗ GraduateStudents

May 17, 2000 1



We propose the following hardware set up with four vehicles in our Mechanical Systems

Laboratory at University of Delaware. We plan to make this physical facility available to

other members of the research community to test the effectiveness of their algorthims and

controller implementations. Within such a facility, the different parameters of the model

and controller can be altered to evaluate the performance sensitivities as a result of these

change in parameters.

Our implementation on this experiment setup will be based on a two degree-of-freedom

controller approach: (i) development of a reference trajectory for the system consistent

with dynamics and constraints; (ii) an exponentially stable controller implemented around

the reference trajectory. The reference trajectory development will be based on results

from nonlinear systems theory and feedback linearization to efficiently solve the problem

in a higher-order space, with a large fraction of computations done off-line ([1], [2], [3]).

Such a study will bring out the issues of performance degradation during an experimental

task and will provide a rich test-bed for comparing the effectiveness of different paradigms

of control.
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Abstract
In this paper, we present a multi-sensor cooperation

paradigm between an omnidirectional vision system and a
low cost panoramic range finder system using to localize
a mobile robot in its environment. These two sensors,
which have been used independently until now, provide
some complementary data. This association enables us to
build a robust sensorial model which integrates an
important number of significant primitives. We can thus
realize an absolute localization of the mobile robot in
particular configurations, like symmetric environments,
where it is not possible to determine the position with the
use of only one of the two sensors. In a first part, we
present our global perception system. In a second part, we
describe our sensorial model building approach and our
segment classification method which takes into account
the belief notion concerning a sensor. Finally we present
an absolute localization method which uses three
matching criteria fused thanks to the combination rules of
the Dempster-Shafer theory. The basic probability
assignment got for each primitive matching enables to
estimate the reliability of the localization. We test our
global absolute localization system on several robot’s
elementary moves in an indoor and symmetric
environment.

1 INTRODUCTION

Autonomous mobile robots cannot rely solely on dead-
reckoning to determine their configuration because dead-
reckoning errors are cumulative. That's why they must use
exteroceptive sensors that get information from the
environment in order to estimate the robot's location more
accurately. This leads to a classical localization method
based on the fusion of dead reckoning data and
exteroceptive data. The fusion method generally used is
based on the extended kalman filter (EKF). The
perception systems used both with the dead reckoning can
be of different natures: a goniometer [3], the SYCLOP
system [4], a laser range scanner [2].

Another approach consists in using only exteroceptive
data: the robot’s configuration is calculated in the
environment reference without using previous
information. To answer to this problem, two strategies are
generally used. The first consists in marking the robot’s
evolution world with artificial beacons [5]. The second

one consists in using the intrinsic features of the
environment (doors, edges, corners…)[4] [1].

Artificial beacons can be detected fast and reliably and
provide accurate positioning information with minimal
processing. This kind of system is generally employed for
industrial applications [10]. Unfortunately, these methods
lack flexibility and modularity because it is necessary to
fit out the robot's evolution environment.

The other solution consists in referencing on
environment characteristic elements and offers a great
modularity because the robot can localize itself directly in
accordance with the landmarks. This kind of localization
is founded on a matching stage between a sensorial model
and a theoretical map of the environment. The perception
systems used in that case are often the vision systems and
the range finding ones. Perez in [6] determines with a
panoramic laser range finder the absolute position of its
robot by using the line segments as sensorial primitives.
Similarly Yagi uses an omnidirectional vision system to
develop navigation and environment map building
methods [1]. We can notice that the robustness of these
methods is mainly linked to the matching stage. The more
precise and rich information the sensorial model will give,
the more robust the matching stage will be.

That is why we have worked on a localization approach
based on the cooperation of two omnidirectional
perception systems: the vision system SYCLOP and a low
cost range finder system. The association of these two
kinds of complementary information permits to generate a
sensorial model with a high descriptive level. Then, the
matching stage provides an unique solution and we obtain
a robust absolute determination of the robot’s
configuration.

The first part of this paper presents the global
omnidirectional perception system. The second part deals
with the sensorial model building method based on the
management of two types of information. We describe
also our classification method of the obtained segments on
two classes according to their reliability. Our absolute
localization method, based on a Dempster-Shafer
multicriteria fusion approach, will be presented in the last
part. In the conclusion we will analyze the experimental
results reached with our mobile robot SARAH.



2 THE GLOBAL OMNIDIRECTIONAL PERCEPTION
SYSTEM

To localize our mobile robot, we use an original
perception system making cooperate two omnidirectional
sensors: an omnidirectional vision system (SYCLOP) [4]
and a low cost and fast panoramic range finder system
(Figure 1). These two sensors have been developed and
used independently within our laboratory [4] [9]. The
rotation axis of the laser is in line with the center of the
conic reflector. This geometric constraint is taken into
account at the time of a previous phase of calibration.

Figure 1: The global perception system

The range finder system is an active vision sensor. This
method consists in projecting on the scene a visible light
with known pattern geometry (a laser spot in our case). A
camera images the illuminated scene with a given
parallax. The desired 3D-information can be deduced
from the position of the imaged laser point and the lateral
distance between the projector and the camera (Figure 2).

Figure 2: The geometric configuration of an active triangulation system.

The laser beam intersects the landmark M1 in the point
P1 (Figure 2). This point is projected on the retinal plane
through the focal point F to a point u1. A landmark M2,
located at an other distance, generates a point u2. The
distance of the landmark or the object Mi can be
determined from the position of the point ui.

This perception system allows to obtain an
omnidirectional range finding sensorial model. We
manage in the sensorial model reference the cartesian
distance between the laser spot and the sensor. The kind

of primitives is the same that a classical range finder laser.
The interest of this system is on the one hand its low cost
and on the other hand its rapidity.

The prototype we built is constructed from a laser diode
and a CCD camera. An infrared filter is used to extract
only the light of the laser. The effective measurable
distance region is designated as 0.8m-5m: this distance is
thought to be a sufficient distance for a mobile robot to
detect obstacles and maneuver around them.

The experimental study of this sensor is presented in [9].
The SYCLOP system, similar to the COPIS one [1], is

composed of a conic mirror and a CCD camera. It allows
to detect all the vertical landmarks of the environment
thanks to a two dimensional projection. (Figure 3). The
vertical landmarks are characterized by a radial straight
line corresponding to a high contrast variation. These
radial straight lines are extracted with a treatment based
on the Sobel gradient. We can note that we work in fairly
constraint environments, which not generate an excessive
number of detected landmarks.

Figure 3: Principle of the omnidirectional sensor SYCLOP

This two omnidirectional sensors association permits to
manage some complementary and redundant information
within the same sensorial model. With the SYCLOP
system we exploit, after the segmentation phase [1], the
radial straight lines which characterize angles of every
vertical object as, for example, doors, corners, edges,
radiators. With the vision system, the information of depth
cannot be gotten on an unique acquisition. For example, it
is not possible to differentiate with this only sensor use
the notion of opening (corridor, opening of door….) and
the notion of vertical object (closed door, radiator,…)
(Figure 4).

For a higher description level, it is therefore interesting
to use a sensor providing some complementary
information. Then we have associated to SYCLOP an
inexpensive range finding sensor capable to be fast.
Following a segmentation stage [9], this sensor permits us
to exploit sensorial primitives that are segments (Figure
4). These segments characterize straight partitions of the
environment. In this case we have the notion of depth, but
it is impossible to differentiate two vertical objects placed
in the same alignment: for example two closed doors
placed on the same wall (Figure 4). It misses the notion of
angle that will be provided by the SYCLOP system.
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Figure 4: Principle of the omnidirectional sensorial cooperation.

Finally this cooperative approach permits to construct a
sensorial model whose descriptive level is high. This
descriptive level is superior to the one obtained with each
sensor individually. Moreover with an appropriated
management of the redundant data (separation between
two segments for the range finder and radial straight line
for the SYCLOP system) we can compensate a sensorial
information absence on one of this two sensors (Figure 4).

3 SENSORIAL MODEL CONSTRUCTION

The sensorial model of the evolution world is based on
the taking into account of two types of data (Figure 4): the
vertical landmarks angles and the segments characterizing
walls. Segments are managed with two points whose
coordinates are expressed in the robot’s reference. The
managed primitive in the final sensorial model will be
segments. These segments will be determined with two
types of approaches  :

q An approach based on the data complementarity: this
treatment consists in cutting up segments gotten with
the range finder in subsegments (Figure 5). The
carving is realized with the radial straight lines of the
vision system.

q An approach based on the data redundancy: the
redundant aspect is characterized by the detection of a
vertical landmark with the two sensors (Figure 5). In
certain cases a vertical landmark is detected by the
range finder with the end points of segments. We will
be able to confirm the existence of a segment
extremity if a radial straight line corresponds to it. In
case of radial straight line absence we will keep the
segmentation obtained with the range finding
sensorial model.

Figure 5: The Different cases of the cooperation algorithm.

We have integrated these different cases of cooperation
in the sensorial model building algorithm shown on
Figure 6.

The first step consists in extracting line segments from
the set of points given by the sensor. We use the recursive
Duda-Hart segmentation algorithm [7] [9]. To decrease
the noise sensitivity of this algorithm we have added a
pre-processing stage on the set of points in order to
eliminate the aberrant points. Besides, in order to fit as
better as possible the set of points, we apply a least square
algorithm on the obtained segments.

Figure 6: Principle of the global sensorial model building algorithm

From the SYCLOP image, we treat the radial lines with
a segmentation algorithm based on a simplified Hough
transform. We fixed the threshold detection of a radial
line (number of pixels composing a radial line ) to an
important value in order to keep the significant radial
primitives.

The fusion step, described on Figure 4 and Figure 5, is
based on the taking into account of three cases :
q The treatment of redundant data (case 1 of Figure 5).

In this case we take as hypothesis to use the radial
line systematically to determine the end point of a
segment. The angle of a vertical landmark is
determined more precisely with the vision system that
with the range finder.

q The treatment of complementary data (case 2 of
Figure 5). This treatment consists in cutting up a
range finding segment into several final subsegments.
This stage is based on the segment intersection
determination.



q The treatment of missing data (case 3 of Figure 5).
The notion of missing data is here characterized by a
vertical landmark which is not detected with the
vision sensor. In this case the range finding
breakpoint is considered directly.

During this stage, we classify the segments and
subsegments we get in two classes of reliability: a class
"SURE" and a class "UNCERTAIN". In this purpose, we
take into account five criterion for each segment.

The first criteria is the mean distance between the range
finding points contained by the segment and this segment.
If this mean distance is high, it means that the points are
not very well aligned, so this segment is not very sure.

The second criteria is the number of points supported by
the segment. This criteria is only discriminative when the
segment contains very few points. In this case, it is not
sure.

The third criteria is the segment density of points. As
shown in [9], a major drawback of this kind of
triangulation depth sensor is a decreasing resolution with
increasing distance. So, this criteria, which is linked to the
mean distance between the sensor and the set of point, is a
good indicator of the segment reliability (more distant the
set of points is, less the precision is). Considering the
measure extent of the sensor (0.8m from 5m), the minimal
and maximal density are as shown on Figure 7.

Figure 7: quantification of the density criteria

The fourth criteria analyzes if the segment has been
detected by one or by the two sensors. The different cases
are:
q The two extremities of a segment are detected only by

the laser range finder (segment S1 in the case 1 of
Figure 8). This segment has a weight of 1.

q One extremity of a segment is detected by the laser
range finder and the other extremity is detected only
by the conic mirror (segment S1 in the case 2 of
Figure 8). This segment has a weight of 2 because, as
we say before, we think that the radial straight lines
are more precise and reliable.

q One extremity of a segment is detected by the two
sensors and the other extremity is detected only by
the laser, or the two extremities are detected only by

the conic mirror (segment S1 in the case 3 of Figure
8). This segment has a weight of 3.

q One extremity of a segment is detected by the two
sensors and the other extremity is detected only by
SYCLOP (segment S1 in the case 4 of Figure 8). This
segment has a weight of 4.

q The two extremities of a segment are detected by the
two sensors (segment S1 on the case 5 of Figure 8).
This segment has a weight of 5.

case 1 case 2

case 3 case 4

S1

Range finding
segments

Radial
line

Radial
l ine

case 5

Figure 8: powdered segment, the four cases.

The last criteria concerns a gray level curves extracted
from the SYCLOP image. We take into consideration five
concentric gray level circles whose average is made. We
obtain thus one gray level curve from 0 to 360 degrees.
We apply on the portions of curve which represent a
segment a least square algorithm. We obtain a straight line
and we compute the mean difference of the gray level
value from this line. If this mean difference is high, this
means that the gray level sector is not constant. This case
occurs generally when a landmark has not been detected
by SYCLOP, so this segment is not sure.

Figure 9 : the gray level curve of the experimental result shown fig. 14

0° 360°

0

255

gray level curve of segment 6.
The approximation is good,
this segment is sure

gray level curve of segment
12. The approximation is
bad, a landmark has not
been detected



The fusion of these five criteria is made thanks to the
combination rules of the Dempster-Shafer theory [8][11].
We use this theory because it is an interesting formalism
which enables to represent ignorance. Our frame of
discernment is composed of two elements: "SURE" and
"UNCERTAIN". The basic probability assignments m1,
m2, m3, m4 and m5 for this five criteria are shown in Figure
10. We can see that, for certain values, the criterion are
not discriminative and Dempster-Shafer enables to
represent this ignorance (for example, if the density is
equal to 0.12 points/cm, this value does not permit to take
a decision SURE or UNCERTAIN for this criteria).
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Figure 10: the B.P.As of the four classification criteria
({SURE,UNCERTAIN}=Θ)

For the fourth criteria, the B.P.A. are:
weight 1:m4(SURE)=m4(Θ)=0.6, m4(UNCERTAIN)=0.4

weight 2:m4(SURE)=0, m4(Θ)=1, m4(UNCERTAIN)=0
weight 3:m4(SURE)=0.3,m4(Θ)=0.7,m4(UNCERTAIN)=0
weight 4:m4(SURE)=0.6,m4(Θ)=0.4,m4(UNCERTAIN)=0
weight 5:m4(SURE)=1, m4(Θ)=m4(UNCERTAIN)=0

We can then perform the combination calculation thanks
to the Dempster-Shafer rules [8][11]. If the conflict
coefficient k  between the elements of the frame of
discernment is superior to 0.7, it means that our criteria
disagree. In this case, we decided that our segment is
uncertain. If k<0.7, we compute the combination of belief
functions for each element of the frame of discernment
and we choose the class which has the maximal B.P.A.

The last stage (P3 on Figure 6) consists in eliminating
the non significant segments in the final cooperative
sensorial model. A non significant segment is
characterized by a number of range finding points equal to
0 and a length (Cartesian distance) inferior to a
predetermined threshold.

This stage permits to decrease the combinatory aspect of
the matching stage and to increase the robustness.

This building algorithm enables to get a sensorial model
where the number of exploitable primitives is more
important than the number of primitives got by each
sensor when it works individually. Besides, we obtain a
certainty information of a segment by considering five
criteria. This information will be used in the matching
phase.

4 ABSOLUTE LOCALIZATION METHOD

The robot configuration is determined by matching the
sensorial model, got by multisensor cooperation, with a
theoretical map of the environment. The primitives used
for this matching phase are segments. Therefore, all
environment’s elements like doors, walls, windows,
radiators… are indexed as segments in the theoretical
map.

For each segment, we have considered three
correspondence tests, which are similar to these used by
Crowley [7]:
q the angular difference between the two segments,
q the difference in length between the two segments,
q the distance between the centers of the two segments.

Figure 11: The three matching criteria.
The fusion of these three treatments is made thanks to the
combination rules of the Dempster-Shafer theory [8]. Our
frame of discernment is composed of two elements: YES
and NO corresponding to those assertions : "Yes, we can
match the two segments" and "No, we can not match the
two segments". For each criterion, we have determined
the Basic Probability Assignments (B.P.A.) m1,  m2 ,  m3

shown Figure 12.
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Figure 12: basic probability assignments of matching criteria
({YES,NO}=Θ)

We can then perform the combination calculation thanks
to the Dempster-Shafer rules [8]. Since we have three
criteria, we first fuse the two first criteria.

The conflict coefficient between these two first criteria
is:
k12 = m1(YES).m2(NO)+ m1(NO).m2(YES) (1)

If k12<1, the conflict is not complete and the
combination of belief functions m12 for these two elements
of the frame of discernment is given by:
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Then we fuse the last criterion. We compute the conflict
coefficient k  (3) between this criterion and the two criteria
we have fused above:

k = m12(YES).m3(NO) + m12(NO).m2(YES) (3)

If k>0.7, we think that the conflict is too high. So we
decide to take a prudent decision: we don't match the two
segments. If k<0.7, we compute the combination of belief
functions for each focal element:
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The segments are matched if B.P.A. for the YES m(YES)
is superior to the B.P.A. for the NO m(NO) .

The first stage of this localization algorithm consists in
determining a list of sensorial segments Ls which have a
strong probability of existence. This segments are the
"SURE" segments obtained during the fusion stage.

We consider that the length of these segments has been
determined with a good accuracy. So, our starting
correspondence test is the length of a segment.

In the second stage, we consider a segment Lsk from the
list Ls and we search the theoretical map segments which
length is similar to the Lsk segment length. Each found
theoretical segment is superposed on the sensorial
segment Lsk and we apply the third step in order to test the
correspondence of the other sensorial segments.

The third step consists in applying the three criteria
describe above on all the segments on the list Ls except
the segment Lsk. A segment is matched if the B.P.A. for
the YES is superior to the B.P.A. for the NO. To choice
the optimal matching solution we calculate a V criteria.
For each matched segment pair, we increment this V
coefficient which characterizes the robustness of the
global matching. V is managed with the following
algorithm:
Given:
- B the B.P.A. for the YES of the matched

segment pair
- W a weight linked to the segment's class

(SURE segment: w=3, UNCERTAIN segment:
w=1).

FOR each global matching
V=0
FOR each segment matched

V = V + (B*W)
END

END
So we can see that V is an interesting and discriminative

indicator of the global matching relevance since V takes
into account the class of each matched segment ("SURE",
"UNCERTAIN") and the quality of each matched pair
(through the B.P.A. for the YES).

These three steps are then repeated for all the Ls list
segments. The final solution is the one which permits the
maximal V.

5 EXPERIMENTAL RESULTS

To test the robustness of our localization algorithm,
we have performed it on several sensorial acquisitions
made in an indoor environment (Figure 13). The two
omnidirectional acquisitions are made when the robot is
stopped. The omnidirectional acquisitions and the
localization algorithm are computed in a Pentium PC
located on our mobile robot. A Matrox Meteor II video
card is used to acquire the omnidirectionnal image and the
laser acquisition. Our experimental perception system is



shown on Figure 13.

Figure 13: Our global omnidirectional perception system and the
experimental indoor environment.

In order to show the interest of our cooperative
approach, we have tested our localization method on
symmetric environments (the first picture on Figure 13).
The use of one sensor individually instead of the two
sensors emphasizes the robustness problem: a strong
failure rate has been observed for the matching phase
when we use only one sensor [9].

The first environment is a long corridor (length: 50
meters). Figure 14 shows a sensorial model got with our
cooperative approach. The robot is located in the middle
of the corridor (Figure 13). We can see on Figure 14 the
final decomposition on an set of segments which represent
doors and parts of wall. We show on this figure the radial
straight lines obtained with the omnidirectional conic
mirror. We must note that, for this environment, the depth
sensor would not have been able to localize the robot: two
parallel identical segments would have been detected. The
SYCLOP system used alone would have posed the
problem of environment symmetry. We can also remark
that uncertain segments are the segments which are far
from the robot (not well aligned) or which correspond to
the pillars of the corridor (not detected during the Duda-
Hart segmentation stage). The robot final position
successfully obtained shows the robustness of our method
and its accuracy. We have indeed a position error of 8cm
and an orientation error of 3 degree.
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Figure 14: the cooperative sensorial model with the segments
classification and the BPA(U=UNCERTAIN, S=SURE) (first figure) and
the final position determination corresponding to the optimal matching

We show on Figure 15 results obtained in an other
symmetric environment: a laboratory square hall.
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Figure 15: cooperative sensorial model and final position determination
in a hall environment.

The same remarks can be done: the use of the two
sensors provides enough sensorial information to enable
the matching algorithm to converge to a coherent solution.

The third environment is the end of the corridor shown
Figure 13. This environment constitutes a favorable
experimental configuration: it is not symmetric and it has
an important number of exploitable landmarks (figure 10).
We can note here on several robot's configuration
determination that our matching selection criteria is highly
discriminative: the good configuration has been computed
on all the acquisitions.
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Figure 16: cooperative sensorial model (first figure) and final position
determination.

Finally on a complete path makes in the corridor by
our robot mobile SARAH, we could note on 40
acquisitions that, on the one hand, all the absolute
configurations have been determined correctly, and, on
the other hand, the mean error was equal to 11 cm in
position and 3 degree in orientation.

In spite of an important combinatory aspect, our
cooperative localization method proves to be robust and
particularly accurate.

6 CONCLUSION

We have presented in this study an absolute localization
approach based on the cooperation between two
omnidirectional sensors: an omnidirectionnal vision
sensor and a range finding sensor. This association allows
to treat two types of complementary data. Then we obtain
a highly descriptive sensorial model which integrates an
important number of primitives and enables to increase
the robustness of the matching stage. We classify also
every sensed segment in two reliability classes according
to five criteria fused thanks to the Dempster-Shafer rules.
The absolute localization paradigm based on this
matching stage takes into account several criteria which
are merged with the Dempster Shafer rules. The choice of
the optimal matching is based on a highly discriminative
criteria which associates the segment reliability classes
and a B.P.A. linked to the matching stage. We have tested
our cooperative absolute localization algorithm on several

particular environment like for example symmetrical
environment. On the one hand, we can note on these
experimental results that the robot’s configuration
determination is realized in a unique way and on the other
hand the absolute robot's configuration is calculated with
a relatively weak systematic error.
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Abstract
In this paper, we present a multi-sensor cooperation

paradigm between an omnidirectional vision system and a
low cost panoramic range finder system using to localize
a mobile robot in its environment. These two sensors,
which have been used independently until now, provide
some complementary data. This association enables us to
build a robust sensorial model which integrates an
important number of significant primitives. We can thus
realize an absolute localization of the mobile robot in
particular configurations, like symmetric environments,
where it is not possible to determine the position with the
use of only one of the two sensors. In a first part, we
present our global perception system. In a second part, we
describe our sensorial model building approach and our
segment classification method which takes into account
the belief notion concerning a sensor. Finally we present
an absolute localization method which uses three
matching criteria fused thanks to the combination rules of
the Dempster-Shafer theory. The basic probability
assignment got for each primitive matching enables to
estimate the reliability of the localization. We test our
global absolute localization system on several robot’s
elementary moves in an indoor and symmetric
environment.

1 INTRODUCTION

Autonomous mobile robots cannot rely solely on dead-
reckoning to determine their configuration because dead-
reckoning errors are cumulative. That's why they must use
exteroceptive sensors that get information from the
environment in order to estimate the robot's location more
accurately. This leads to a classical localization method
based on the fusion of dead reckoning data and
exteroceptive data. The fusion method generally used is
based on the extended kalman filter (EKF). The
perception systems used both with the dead reckoning can
be of different natures: a goniometer [3], the SYCLOP
system [4], a laser range scanner [2].

Another approach consists in using only exteroceptive
data: the robot’s configuration is calculated in the
environment reference without using previous
information. To answer to this problem, two strategies are
generally used. The first consists in marking the robot’s
evolution world with artificial beacons [5]. The second

one consists in using the intrinsic features of the
environment (doors, edges, corners…)[4] [1].

Artificial beacons can be detected fast and reliably and
provide accurate positioning information with minimal
processing. This kind of system is generally employed for
industrial applications [10]. Unfortunately, these methods
lack flexibility and modularity because it is necessary to
fit out the robot's evolution environment.

The other solution consists in referencing on
environment characteristic elements and offers a great
modularity because the robot can localize itself directly in
accordance with the landmarks. This kind of localization
is founded on a matching stage between a sensorial model
and a theoretical map of the environment. The perception
systems used in that case are often the vision systems and
the range finding ones. Perez in [6] determines with a
panoramic laser range finder the absolute position of its
robot by using the line segments as sensorial primitives.
Similarly Yagi uses an omnidirectional vision system to
develop navigation and environment map building
methods [1]. We can notice that the robustness of these
methods is mainly linked to the matching stage. The more
precise and rich information the sensorial model will give,
the more robust the matching stage will be.

That is why we have worked on a localization approach
based on the cooperation of two omnidirectional
perception systems: the vision system SYCLOP and a low
cost range finder system. The association of these two
kinds of complementary information permits to generate a
sensorial model with a high descriptive level. Then, the
matching stage provides an unique solution and we obtain
a robust absolute determination of the robot’s
configuration.

The first part of this paper presents the global
omnidirectional perception system. The second part deals
with the sensorial model building method based on the
management of two types of information. We describe
also our classification method of the obtained segments on
two classes according to their reliability. Our absolute
localization method, based on a Dempster-Shafer
multicriteria fusion approach, will be presented in the last
part. In the conclusion we will analyze the experimental
results reached with our mobile robot SARAH.



2 THE GLOBAL OMNIDIRECTIONAL PERCEPTION
SYSTEM

To localize our mobile robot, we use an original
perception system making cooperate two omnidirectional
sensors: an omnidirectional vision system (SYCLOP) [4]
and a low cost and fast panoramic range finder system
(Figure 1). These two sensors have been developed and
used independently within our laboratory [4] [9]. The
rotation axis of the laser is in line with the center of the
conic reflector. This geometric constraint is taken into
account at the time of a previous phase of calibration.

Figure 1: The global perception system

The range finder system is an active vision sensor. This
method consists in projecting on the scene a visible light
with known pattern geometry (a laser spot in our case). A
camera images the illuminated scene with a given
parallax. The desired 3D-information can be deduced
from the position of the imaged laser point and the lateral
distance between the projector and the camera (Figure 2).

Figure 2: The geometric configuration of an active triangulation system.

The laser beam intersects the landmark M1 in the point
P1 (Figure 2). This point is projected on the retinal plane
through the focal point F to a point u1. A landmark M2,
located at an other distance, generates a point u2. The
distance of the landmark or the object Mi can be
determined from the position of the point ui.

This perception system allows to obtain an
omnidirectional range finding sensorial model. We
manage in the sensorial model reference the cartesian
distance between the laser spot and the sensor. The kind

of primitives is the same that a classical range finder laser.
The interest of this system is on the one hand its low cost
and on the other hand its rapidity.

The prototype we built is constructed from a laser diode
and a CCD camera. An infrared filter is used to extract
only the light of the laser. The effective measurable
distance region is designated as 0.8m-5m: this distance is
thought to be a sufficient distance for a mobile robot to
detect obstacles and maneuver around them.

The experimental study of this sensor is presented in [9].
The SYCLOP system, similar to the COPIS one [1], is

composed of a conic mirror and a CCD camera. It allows
to detect all the vertical landmarks of the environment
thanks to a two dimensional projection. (Figure 3). The
vertical landmarks are characterized by a radial straight
line corresponding to a high contrast variation. These
radial straight lines are extracted with a treatment based
on the Sobel gradient. We can note that we work in fairly
constraint environments, which not generate an excessive
number of detected landmarks.

Figure 3: Principle of the omnidirectional sensor SYCLOP

This two omnidirectional sensors association permits to
manage some complementary and redundant information
within the same sensorial model. With the SYCLOP
system we exploit, after the segmentation phase [1], the
radial straight lines which characterize angles of every
vertical object as, for example, doors, corners, edges,
radiators. With the vision system, the information of depth
cannot be gotten on an unique acquisition. For example, it
is not possible to differentiate with this only sensor use
the notion of opening (corridor, opening of door….) and
the notion of vertical object (closed door, radiator,…)
(Figure 4).

For a higher description level, it is therefore interesting
to use a sensor providing some complementary
information. Then we have associated to SYCLOP an
inexpensive range finding sensor capable to be fast.
Following a segmentation stage [9], this sensor permits us
to exploit sensorial primitives that are segments (Figure
4). These segments characterize straight partitions of the
environment. In this case we have the notion of depth, but
it is impossible to differentiate two vertical objects placed
in the same alignment: for example two closed doors
placed on the same wall (Figure 4). It misses the notion of
angle that will be provided by the SYCLOP system.
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Figure 4: Principle of the omnidirectional sensorial cooperation.

Finally this cooperative approach permits to construct a
sensorial model whose descriptive level is high. This
descriptive level is superior to the one obtained with each
sensor individually. Moreover with an appropriated
management of the redundant data (separation between
two segments for the range finder and radial straight line
for the SYCLOP system) we can compensate a sensorial
information absence on one of this two sensors (Figure 4).

3 SENSORIAL MODEL CONSTRUCTION

The sensorial model of the evolution world is based on
the taking into account of two types of data (Figure 4): the
vertical landmarks angles and the segments characterizing
walls. Segments are managed with two points whose
coordinates are expressed in the robot’s reference. The
managed primitive in the final sensorial model will be
segments. These segments will be determined with two
types of approaches  :

q An approach based on the data complementarity: this
treatment consists in cutting up segments gotten with
the range finder in subsegments (Figure 5). The
carving is realized with the radial straight lines of the
vision system.

q An approach based on the data redundancy: the
redundant aspect is characterized by the detection of a
vertical landmark with the two sensors (Figure 5). In
certain cases a vertical landmark is detected by the
range finder with the end points of segments. We will
be able to confirm the existence of a segment
extremity if a radial straight line corresponds to it. In
case of radial straight line absence we will keep the
segmentation obtained with the range finding
sensorial model.

Figure 5: The Different cases of the cooperation algorithm.

We have integrated these different cases of cooperation
in the sensorial model building algorithm shown on
Figure 6.

The first step consists in extracting line segments from
the set of points given by the sensor. We use the recursive
Duda-Hart segmentation algorithm [7] [9]. To decrease
the noise sensitivity of this algorithm we have added a
pre-processing stage on the set of points in order to
eliminate the aberrant points. Besides, in order to fit as
better as possible the set of points, we apply a least square
algorithm on the obtained segments.

Figure 6: Principle of the global sensorial model building algorithm

From the SYCLOP image, we treat the radial lines with
a segmentation algorithm based on a simplified Hough
transform. We fixed the threshold detection of a radial
line (number of pixels composing a radial line ) to an
important value in order to keep the significant radial
primitives.

The fusion step, described on Figure 4 and Figure 5, is
based on the taking into account of three cases :
q The treatment of redundant data (case 1 of Figure 5).

In this case we take as hypothesis to use the radial
line systematically to determine the end point of a
segment. The angle of a vertical landmark is
determined more precisely with the vision system that
with the range finder.

q The treatment of complementary data (case 2 of
Figure 5). This treatment consists in cutting up a
range finding segment into several final subsegments.
This stage is based on the segment intersection
determination.



q The treatment of missing data (case 3 of Figure 5).
The notion of missing data is here characterized by a
vertical landmark which is not detected with the
vision sensor. In this case the range finding
breakpoint is considered directly.

During this stage, we classify the segments and
subsegments we get in two classes of reliability: a class
"SURE" and a class "UNCERTAIN". In this purpose, we
take into account five criterion for each segment.

The first criteria is the mean distance between the range
finding points contained by the segment and this segment.
If this mean distance is high, it means that the points are
not very well aligned, so this segment is not very sure.

The second criteria is the number of points supported by
the segment. This criteria is only discriminative when the
segment contains very few points. In this case, it is not
sure.

The third criteria is the segment density of points. As
shown in [9], a major drawback of this kind of
triangulation depth sensor is a decreasing resolution with
increasing distance. So, this criteria, which is linked to the
mean distance between the sensor and the set of point, is a
good indicator of the segment reliability (more distant the
set of points is, less the precision is). Considering the
measure extent of the sensor (0.8m from 5m), the minimal
and maximal density are as shown on Figure 7.

Figure 7: quantification of the density criteria

The fourth criteria analyzes if the segment has been
detected by one or by the two sensors. The different cases
are:
q The two extremities of a segment are detected only by

the laser range finder (segment S1 in the case 1 of
Figure 8). This segment has a weight of 1.

q One extremity of a segment is detected by the laser
range finder and the other extremity is detected only
by the conic mirror (segment S1 in the case 2 of
Figure 8). This segment has a weight of 2 because, as
we say before, we think that the radial straight lines
are more precise and reliable.

q One extremity of a segment is detected by the two
sensors and the other extremity is detected only by
the laser, or the two extremities are detected only by

the conic mirror (segment S1 in the case 3 of Figure
8). This segment has a weight of 3.

q One extremity of a segment is detected by the two
sensors and the other extremity is detected only by
SYCLOP (segment S1 in the case 4 of Figure 8). This
segment has a weight of 4.

q The two extremities of a segment are detected by the
two sensors (segment S1 on the case 5 of Figure 8).
This segment has a weight of 5.

case 1 case 2

case 3 case 4

S1

Range finding
segments

Radial
line

Radial
l ine

case 5

Figure 8: powdered segment, the four cases.

The last criteria concerns a gray level curves extracted
from the SYCLOP image. We take into consideration five
concentric gray level circles whose average is made. We
obtain thus one gray level curve from 0 to 360 degrees.
We apply on the portions of curve which represent a
segment a least square algorithm. We obtain a straight line
and we compute the mean difference of the gray level
value from this line. If this mean difference is high, this
means that the gray level sector is not constant. This case
occurs generally when a landmark has not been detected
by SYCLOP, so this segment is not sure.

Figure 9 : the gray level curve of the experimental result shown fig. 14
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The fusion of these five criteria is made thanks to the
combination rules of the Dempster-Shafer theory [8][11].
We use this theory because it is an interesting formalism
which enables to represent ignorance. Our frame of
discernment is composed of two elements: "SURE" and
"UNCERTAIN". The basic probability assignments m1,
m2, m3, m4 and m5 for this five criteria are shown in Figure
10. We can see that, for certain values, the criterion are
not discriminative and Dempster-Shafer enables to
represent this ignorance (for example, if the density is
equal to 0.12 points/cm, this value does not permit to take
a decision SURE or UNCERTAIN for this criteria).
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Figure 10: the B.P.As of the four classification criteria
({SURE,UNCERTAIN}=Θ)

For the fourth criteria, the B.P.A. are:
weight 1:m4(SURE)=m4(Θ)=0.6, m4(UNCERTAIN)=0.4

weight 2:m4(SURE)=0, m4(Θ)=1, m4(UNCERTAIN)=0
weight 3:m4(SURE)=0.3,m4(Θ)=0.7,m4(UNCERTAIN)=0
weight 4:m4(SURE)=0.6,m4(Θ)=0.4,m4(UNCERTAIN)=0
weight 5:m4(SURE)=1, m4(Θ)=m4(UNCERTAIN)=0

We can then perform the combination calculation thanks
to the Dempster-Shafer rules [8][11]. If the conflict
coefficient k  between the elements of the frame of
discernment is superior to 0.7, it means that our criteria
disagree. In this case, we decided that our segment is
uncertain. If k<0.7, we compute the combination of belief
functions for each element of the frame of discernment
and we choose the class which has the maximal B.P.A.

The last stage (P3 on Figure 6) consists in eliminating
the non significant segments in the final cooperative
sensorial model. A non significant segment is
characterized by a number of range finding points equal to
0 and a length (Cartesian distance) inferior to a
predetermined threshold.

This stage permits to decrease the combinatory aspect of
the matching stage and to increase the robustness.

This building algorithm enables to get a sensorial model
where the number of exploitable primitives is more
important than the number of primitives got by each
sensor when it works individually. Besides, we obtain a
certainty information of a segment by considering five
criteria. This information will be used in the matching
phase.

4 ABSOLUTE LOCALIZATION METHOD

The robot configuration is determined by matching the
sensorial model, got by multisensor cooperation, with a
theoretical map of the environment. The primitives used
for this matching phase are segments. Therefore, all
environment’s elements like doors, walls, windows,
radiators… are indexed as segments in the theoretical
map.

For each segment, we have considered three
correspondence tests, which are similar to these used by
Crowley [7]:
q the angular difference between the two segments,
q the difference in length between the two segments,
q the distance between the centers of the two segments.

Figure 11: The three matching criteria.
The fusion of these three treatments is made thanks to the
combination rules of the Dempster-Shafer theory [8]. Our
frame of discernment is composed of two elements: YES
and NO corresponding to those assertions : "Yes, we can
match the two segments" and "No, we can not match the
two segments". For each criterion, we have determined
the Basic Probability Assignments (B.P.A.) m1,  m2 ,  m3

shown Figure 12.
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Figure 12: basic probability assignments of matching criteria
({YES,NO}=Θ)

We can then perform the combination calculation thanks
to the Dempster-Shafer rules [8]. Since we have three
criteria, we first fuse the two first criteria.

The conflict coefficient between these two first criteria
is:
k12 = m1(YES).m2(NO)+ m1(NO).m2(YES) (1)

If k12<1, the conflict is not complete and the
combination of belief functions m12 for these two elements
of the frame of discernment is given by:
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Then we fuse the last criterion. We compute the conflict
coefficient k  (3) between this criterion and the two criteria
we have fused above:

k = m12(YES).m3(NO) + m12(NO).m2(YES) (3)

If k>0.7, we think that the conflict is too high. So we
decide to take a prudent decision: we don't match the two
segments. If k<0.7, we compute the combination of belief
functions for each focal element:
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The segments are matched if B.P.A. for the YES m(YES)
is superior to the B.P.A. for the NO m(NO) .

The first stage of this localization algorithm consists in
determining a list of sensorial segments Ls which have a
strong probability of existence. This segments are the
"SURE" segments obtained during the fusion stage.

We consider that the length of these segments has been
determined with a good accuracy. So, our starting
correspondence test is the length of a segment.

In the second stage, we consider a segment Lsk from the
list Ls and we search the theoretical map segments which
length is similar to the Lsk segment length. Each found
theoretical segment is superposed on the sensorial
segment Lsk and we apply the third step in order to test the
correspondence of the other sensorial segments.

The third step consists in applying the three criteria
describe above on all the segments on the list Ls except
the segment Lsk. A segment is matched if the B.P.A. for
the YES is superior to the B.P.A. for the NO. To choice
the optimal matching solution we calculate a V criteria.
For each matched segment pair, we increment this V
coefficient which characterizes the robustness of the
global matching. V is managed with the following
algorithm:
Given:
- B the B.P.A. for the YES of the matched

segment pair
- W a weight linked to the segment's class

(SURE segment: w=3, UNCERTAIN segment:
w=1).

FOR each global matching
V=0
FOR each segment matched

V = V + (B*W)
END

END
So we can see that V is an interesting and discriminative

indicator of the global matching relevance since V takes
into account the class of each matched segment ("SURE",
"UNCERTAIN") and the quality of each matched pair
(through the B.P.A. for the YES).

These three steps are then repeated for all the Ls list
segments. The final solution is the one which permits the
maximal V.

5 EXPERIMENTAL RESULTS

To test the robustness of our localization algorithm,
we have performed it on several sensorial acquisitions
made in an indoor environment (Figure 13). The two
omnidirectional acquisitions are made when the robot is
stopped. The omnidirectional acquisitions and the
localization algorithm are computed in a Pentium PC
located on our mobile robot. A Matrox Meteor II video
card is used to acquire the omnidirectionnal image and the
laser acquisition. Our experimental perception system is



shown on Figure 13.

Figure 13: Our global omnidirectional perception system and the
experimental indoor environment.

In order to show the interest of our cooperative
approach, we have tested our localization method on
symmetric environments (the first picture on Figure 13).
The use of one sensor individually instead of the two
sensors emphasizes the robustness problem: a strong
failure rate has been observed for the matching phase
when we use only one sensor [9].

The first environment is a long corridor (length: 50
meters). Figure 14 shows a sensorial model got with our
cooperative approach. The robot is located in the middle
of the corridor (Figure 13). We can see on Figure 14 the
final decomposition on an set of segments which represent
doors and parts of wall. We show on this figure the radial
straight lines obtained with the omnidirectional conic
mirror. We must note that, for this environment, the depth
sensor would not have been able to localize the robot: two
parallel identical segments would have been detected. The
SYCLOP system used alone would have posed the
problem of environment symmetry. We can also remark
that uncertain segments are the segments which are far
from the robot (not well aligned) or which correspond to
the pillars of the corridor (not detected during the Duda-
Hart segmentation stage). The robot final position
successfully obtained shows the robustness of our method
and its accuracy. We have indeed a position error of 8cm
and an orientation error of 3 degree.
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Figure 14: the cooperative sensorial model with the segments
classification and the BPA(U=UNCERTAIN, S=SURE) (first figure) and
the final position determination corresponding to the optimal matching

We show on Figure 15 results obtained in an other
symmetric environment: a laboratory square hall.
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Figure 15: cooperative sensorial model and final position determination
in a hall environment.

The same remarks can be done: the use of the two
sensors provides enough sensorial information to enable
the matching algorithm to converge to a coherent solution.

The third environment is the end of the corridor shown
Figure 13. This environment constitutes a favorable
experimental configuration: it is not symmetric and it has
an important number of exploitable landmarks (figure 10).
We can note here on several robot's configuration
determination that our matching selection criteria is highly
discriminative: the good configuration has been computed
on all the acquisitions.
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Figure 16: cooperative sensorial model (first figure) and final position
determination.

Finally on a complete path makes in the corridor by
our robot mobile SARAH, we could note on 40
acquisitions that, on the one hand, all the absolute
configurations have been determined correctly, and, on
the other hand, the mean error was equal to 11 cm in
position and 3 degree in orientation.

In spite of an important combinatory aspect, our
cooperative localization method proves to be robust and
particularly accurate.

6 CONCLUSION

We have presented in this study an absolute localization
approach based on the cooperation between two
omnidirectional sensors: an omnidirectionnal vision
sensor and a range finding sensor. This association allows
to treat two types of complementary data. Then we obtain
a highly descriptive sensorial model which integrates an
important number of primitives and enables to increase
the robustness of the matching stage. We classify also
every sensed segment in two reliability classes according
to five criteria fused thanks to the Dempster-Shafer rules.
The absolute localization paradigm based on this
matching stage takes into account several criteria which
are merged with the Dempster Shafer rules. The choice of
the optimal matching is based on a highly discriminative
criteria which associates the segment reliability classes
and a B.P.A. linked to the matching stage. We have tested
our cooperative absolute localization algorithm on several

particular environment like for example symmetrical
environment. On the one hand, we can note on these
experimental results that the robot’s configuration
determination is realized in a unique way and on the other
hand the absolute robot's configuration is calculated with
a relatively weak systematic error.
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Abstract

We consider the problem of measuring the perfor-

mance of an intelligent mobile robot system. We be-

lieve that systems are intelligent because their capabil-

ities are more than the sum of their parts. Therefore

any piecemeal e�orts to measure the performance of an

intelligent system are bound to fail. Further, metrics

of utility are more useful to designers than something

as abstract as intelligence. We describe a task-based,

multiple-criteria technique that combines two bench-

marks to result in a metric for navigation. A case

study of two robots is presented, which were evaluated

and compared using the metric.

1 Introduction

We consider the problem of measuring the perfor-

mance of an intelligent mobile robot system. We be-

lieve that systems are intelligent because their capabili-

ties are more than the sum of their parts. Therefore any

piecemeal e�orts to measure the performance of an in-

telligent system are bound to fail. Only measuring per-

formance along a single skill axis is also clearly limiting

since intelligence does not boil down to a single skill or

capability but rather arises due to a complex interplay

between a multitude of capabilities. We strongly advo-

cate the measurement of task-oriented quantities which

establish the utility of a system. To this end, measur-

ing performance along several axes is clearly important

but brings with it several challenges:

� What should the axes be ?

� How do we ensure the axes span the space we want

to benchmark ?

� Does an \orthogonal" set of axes exist ?

� How should the performance measures along these

axes be combined ?

In this paper we describe a task-based, multiple-

criteria technique that combines two benchmarks to

result in a metric for navigation. A case study of two

robots is presented, which were evaluated and com-

pared using the metric.

2 Previous Work

Due to space limitations we limit ourselves to a brief

survey of evaluation techniques for mobile robots. The

so-called static evaluation techniques are speci�cally

designed for measuring stability when the robot is sta-

tionary and when it is moving in a statically stable

fashion. The primary method of choice is an energy

based stability measure as an evaluation function. In

work by Nagy et al. [7] two modes of walker stability

are characterized namely stance stability and walker

stability. Both use the amount of energy needed to

destabilize the walking robot as a measure of the sta-

bility of the robot. The stance stability is identical to

the energy stability margin de�ned by Messuri et al. in

[5] as the minimumwork that must be done on a robot

walker to tip it over an edge of a support boundary.

Early work on robot stability was due to McGhee et

al. [4] who de�ned the support polygon as the convex

hull of the projections of all contacting points on a hor-

izontal plane. In [3] the authors de�ne a conservative

support polygon with the motivation that the walking

robot should retain its stability in the event of a single

leg failure. Of the above energy based measures of sta-

bility the work of Nagy et al. is the most general since

it includes compliance of the mechanism and depends

on the terrain that is underfoot.

In [1] the authors discuss several evaluation crite-

ria for comparing three con�gurations for the design



of a walking robot. Some of the evaluation criteria

were foothold selection area, stride length, static sta-

bility and energy stability. The important tradeo� was

stride vs. stability, based upon which the circulating

con�guration for Ambler was chosen.

Dynamic evaluation techniques are so named be-

cause they focus on properties related to motion.

Wilcox [10] introduced a metric called the MCC (Mo-

bility Characteristic Curve) to measure the ability of

a robot to surmount obstacles. The obstacle was a

cylinder of (theoretically) in�nite length and diame-

ter d which was buried to a depth d=3 in an inclined

plane of slope s composed of loose sand. The MCC

was de�ned as the plot with s on the horizontal axis

and the diameter of the largest cylinder that the robot

could surmount (in dimensionless units based upon its

length) on the vertical axis. The proposed �gure of

merit was the area between the co{ordinate axes and

the MCC. The two main achievements of this method

were its independence of scale and easy reproducibility.

Its chief drawback was that it used a simple obstacle

geometry and did not evaluate the entire system in a

mission oriented way.

Lietzau [2] proposed a set of benchmarks to assess

the performance of a Mars microrover. These bench-

marks were divided into �ve categories namely, mo-

bility, navigation and control, science, autonomy and

environmental. A set of weights was assigned to these

categories based upon their importance by the system

designers and mission specialists. The weighted sum

of the individual benchmarks was then proposed as a

�gure{of{merit. Lietzau's work is a thorough descrip-

tion of the individual subsystem tests that are a neces-

sary part of evaluation but does not focus on the system

level evaluation that we emphasize here. Though it was

never formally characterized as such, Lietzau's evalua-

tion technique is an example of a Linear Programming

approach to solve the problem of evaluation.

3 Case Study

The evaluation methodology that we propose here

is for a particular robot mission - exploration of an

unknown planetary surface. The area to be explored

is assumed to contain rocks whose positions are not

known a priori to the robot since it is presumed to

be in unfamiliar surroundings. The robot mission is

to perform scienti�c experimentation on rocks that are

\interesting". We propose two evaluation functions in

this study based on robot displacement as a function

of mission time and energy consumption.

1

time

 r
0P(r > )

(t)

Figure 1: A Schematic of P (r > r0) vs. Time

3.1 The Cost Functions � and �

The basic intuition behind the two cost functions

proposed is to develop a nondimensional measure of

the robot's ability to cover distance. The idea is to

measure how \good" a particular robot design is by

measuring how far the robot travels from the start lo-

cation as a function of the time elapsed and the en-

ergy consumed by it. At �rst sight it may seem like

the consumption of these two resources is extremely

well correlated. This is indeed the case for straight-

line travel on level ground with no obstacles. However,

in the presence of obstacles it is not so - especially since

the energy consumption of the system changes dramat-

ically depending on whether it is at a standstill or in

motion.

We de�ne a trial as an autonomous traverse of the

terrain by the robot in a particular instantiation of ob-

stacle placement from start to goal. Using multiple tri-

als we estimate the probability that the displacement

r > r0 for di�erent values of the time t. A schematic

of this probability as a function of time is shown in

Figure 1. The main intuition is that the quicker this

curve rises (close) to 1, the better the time utilization

of the robot. Further, good time utilization also dic-

tates that this curve be monotonic increasing. For the

purposes of evaluation one is interested in the robot

covering some displacement r0 within some time t0. In

other words we expect some minimumperformance for

a limited resource (time).

The above requirement means that Robot A should

be assigned a higher score than Robot B in Figure 2.

This can be achieved by de�ning the area under the

curve from t = 0 to t = t0 as a metric. In order to

compare robots of di�erent size we measure displace-

ment (r = kl) in terms of the number k of robot lengths

l. We also measure time in nondimensional terms by
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Figure 2: A Schematic Comparison of P (r > r0) vs.

Time for Robots A and B

multiplying it with v=l where v is the robot velocity.

Let �kl(t) denote the probability of reaching a dis-

placement kl as a function of time.

De�nition 1 The time �gure of merit is de�ned as

� =

Z t0

0

�kl(t)dt (1)

In a similar manner we plot the probability of reach-

ing a displacement kl as a function of the energy e

consumed. Energy is converted to a nondimensional

quantity by dividing it by mgl where m is the mass of

the robot and g is the acceleration due to gravity.

Let �kl(e) denote the probability of reaching a dis-

placement kl as a function of energy.

De�nition 2 The energy �gure of merit is de�ned as

� =

Z e0

0

�kl(e)de (2)

Note than both �gures of merit are non-dimensional.

3.2 The Robots: MENO and Marscar

MENO is a 12 DOF statically stable quadruped

designed and constructed for this study in the USC

Robotics laboratory. Each leg is a rotary-rotary-

prismatic (RRP) design. The body of the robot and

the �rst two links of each leg are in the horizontal plane

and the prismatic joints (the most distal joint of each

limb) are in the vertical plane. This orthogonal design

was inspired by the design of Ambler [1].

The wheeled robot Marscar is 4 wheeled rover with

Ackerman steering.1

1Ackerman steering maintains a particular relationship be-
tween the steer angles of the inner and outer wheels in order

that the entire robot turn about a single point.

Figure 3: MENO and Marscar in a Simulated Martian

Environment
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Figure 4: The Control Architecture for the Wheeled

Robot

There are two main behaviors that drive both

robots. They are avoid obstacles move() and

reorient to goal(). A schematic of the control ar-

chitecture is shown in Figure 4.

Onboard computing is all done on a custom board

built around a Motorola 68332 microcontroller. A

tether is used to supply o�board power for extended

testing and for gathering telemetry. The testing is all

done in a 3:5 m �3:5 m sandbox. A single camera sus-

pended 3 m above the center of the sandbox is used for

tracking the robot's position. We do not use the over-

head camera as a source of information for navigation;

navigation is done by dead reckoning using information

measured by onboard sensors only. The sand surface is

nominally at but not precisely so.



Loop until at goal:

If obstacle in front

Compute ’good’ detour direction

Detour

Else

If goal within angular range limits

Move forward

Else

Reorient towards goal

Endif

Endif

EndLoop

Figure 5: The Navigation Algorithm

3.3 The Navigation Algorithm

Both robots above use the same behavior-based nav-

igation algorithm. There are two2 basic behaviors; 1.

Reorient towards goal and 2. Avoid obstacles. The

basic idea is for the robot to keep track of its current

position using knowledge of its kinematics and proprio-

ceptive sensors (such as wheel encoders on Marscar and

joint angle measurements on MENO). The estimator

running on board the robot performs a simple dead-

reckoning calculation to estimate position and orien-

tation at every move. The 'avoid obstacles' behavior

is also fairly simple - if an obstacle is seen the robot

will attempt to detour around it (while keeping track

of its position as mentioned above). If no obstacle is

blocking the robot, it will attempt to move towards

the goal, re-orienting itself if necessary. The naviga-

tion algorithm is reactive. A schematic outline of the

algorithm is given in Figure 5.

An interesting part of the detour behavior is the use

of global information. When an obstacle is detected the

reactive strategy is to backup and turn. The direction

of the turn is dependent on the current location of the

robot and the commanded goal location in global coor-

dinates. The turn direction that reduces the di�erence

between the robot angle and the desired goal angle �g
is chosen and executed. A purely local strategy would

pick one direction at random but the reactive obsta-

cle avoidance behavior is modi�ed to use some global

information viz. the goal position.

We also adapt the angular range during a traverse.

The basic observation is that small angular errors when

the robot is far away from the goal lead to large po-

sition errors later. To avoid this we keep the angular

range limits (within which no reorientation is neces-

2The legged robot also has balancing and gaiting behaviors

at a lower level. They are discussed elsewhere [8]

sary) small when the robot is far away from the goal.

These limits are progressively increased as the robot

nears the goal.

The experiments were performed in a simulated

Mars terrain comprised of a crushed red brick sand

mixture. The mixture was spread evenly in a 3:5 m by

3:5 m sandbox to a depth of 0:25 m. The sandbox was

populated with rocks of varying size (between 0:04 m

and 0:2 m in diameter) to simulate Martian rock dis-

tributions. The density of the rocks was equal to the

Mars nominal density from the Moore distribution [6].

Since the evaluation functions use probability esti-

mates from numerous mission trials, the experimental

protocol consists of many robot traverses from start to

goal locations in di�erent instantiations of Mars nomi-

nal terrain. There are three main loops. During a par-

ticular instantiation a number of trials are performed

with di�erent start and goal locations. During the

course of each of these trials (as the robot is navigating

from start to goal) the o�board computer is monitor-

ing time. When a certain time interval �t is reached

the overhead vision system images the robot and the

image is stored with a timestamp. When the current

trial is over the sequence of images taken is postpro-

cessed to extract the (x; y) location of the robot as a

function of elapsed time. This information is stored

in a �le and the next trial begins. The procedure is

terminated when all the exemplar start/goal locations

have been used in every exemplar terrain. The proto-

col for energy is exactly the same as the time trials but

instead of monitoring the time elapsed, the power draw

is monitored. Using this a running total of the energy

consumed is maintained. When the energy consump-

tion reaches a threshold �e the robot is imaged.

Once the data recording the position and orientation

of the robot is obtained using the protocol described

above, it is processed to create plots of the required

probability estimates that yield the previously de�ned

�gures of merit that we are interested in. The data

processing steps for the time trials are as follows:

� Fix a given time resource value (t0)

� Fix a required minimum displacement (r0)

� Build a plot of �(r > r0) vs. t

1. for each of the n data sets, 8t < t0 compute

r =
p
(x� xs)2 + (y � ys)2

2. a = number of r values greater or equal to r0

3. use a=n as the required probability estimate

� Compute nondimensionalized � =
R t0

0
�r0 (t)dt



� Repeat above steps for di�erent values of r0 and

t0

The data processing steps for the energy trials are

similar. In both outlines above (xs; ys) is the robot

start location and �(r > r0) denotes the probabil-

ity that the displacement r from the start location is

greater than r0.

4 Data Analysis

The experiments were performed in simulation and

with the physical robots. The datasets discussed here

thus contain results from both. We will however re-

strict ourselves to a discussion of the datasets from the

physical robots since space constraints do not allow a

complete discussion here. The interested reader is re-

ferred to [9] for a complete account.

4.1 Mobility Trials and Clustering in

Tradeo� Space

The �rst step in calculating the �gures of merit is

to calculate the probability of reaching k robot lengths

as functions of time and energy. Since we have multi-

ple trials we estimate this probability as the fraction

of trials in which the displacement was greater than kl

as functions of time and energy consumption. In Fig-

ure 6 the probability of Marscar reaching the threshold

displacement kl is shown for various values of k. The

quantity l is intended to be a measure (with dimen-

sions of length) of the robot size. We use the cube

root of the volume of the smallest rectangular box in

which the robot can be packed. For Marscar l = 0:35

m. All the trials were done in Mars nominal distri-

butions. One can see a reasonable agreement between

the simulated dataset and the dataset collected from

the physical robot. The simulated dataset consisted of

200 trials and the physical dataset consisted of 40 tri-

als. The probability estimates of the simulated dataset

are smoother compared to the physical dataset due to

the larger sample size. The general behavior of the

family of curves shown in Figure 6 is a monotonic rise

to saturation. The interpretation of these curves is

the likelihood of success (at navigating through the

obstacle �eld) as a function of the available resource

(time). A higher k value corresponds to a longer tra-

verse and thus involves greater ability in penetrating

obstacle �elds. As k is increased for the same robot

the probability of achieving the same degree of success

decreases.

In Figure 7 a family of curves is shown which plot

the probability of Marscar achieving a threshold dis-

placement kl as a function of energy consumed. As in
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the case of the plots in the previous �gure, the prob-

ability of greater success shows an asymptotic rise to

saturation. Figure 7 shows the probability estimates

for the simulated as well as physical datasets. As one

can see there is a good match between the two. As

in the previous case larger k values imply longer mis-

sions and thus are harder to achieve for the same value

of the energy resource. Performance degrades as k is

increased. As in the time trials with Marscar, the phys-

ical datasets in Figure 7 are the result of 40 trials and

the simulated datasets are the result of 200 trials.

In order to compute the �gures of merit for MENO

in Mars nominal terrain we follow the same data anal-

ysis procedure as before. The curves showing the plots

of the probabilities of achieving the threshold displace-

ment kl as a function of time elapsed are shown in

Figure 8. As in the previous cases increasing values of

k signify longer missions. For MENO l = 0:47 m. The
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displacements vs. energy in Mars nominal terrain

physical datasets shown in Figure 8 were computed us-

ing 40 trials in Mars nominal terrain and the simulated

datasets were generated using 200 trials in simulation.

The last datasets of interest in the current series

are the behavior of MENO as a function of the energy

consumed in Mars nominal terrain. The relevant plots

are shown in Figure 9.

In the notation of Chapter 4 we now have plots of

�kl(t) and �kl(e); the probabilities of the achieving cer-

tain threshold displacements as functions of time and

energy. Using t0 = 40 min and e0 = 200 kJ as repre-

sentative numbers for the mission under study we cal-

culate the two �gures of merit using Equations 1 and

2 for di�erent values of k. These values are shown in

Table 1.

Figure 10 shows the � and � values for the two robots

in the tradeo� space. The lower left hand side of the

plot (signifying lower evaluation scores) is the space oc-

cupied by the legged robot. The wheeled system has

better scores on both time and energy axes. The eval-

Table 1: The Figures of Merit for MENO and Marscar

for Di�erent Traverse Lengths

k Marscar MENO

� � � �

2 14.7 11504 2.7 6911

4 12.1 11429 2.1 5957

6 9.4 9718 1.1 3609

8 7.3 9635 0.8 2745
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Figure 10: A Comparison of MENO and Marscar in

Mars Nominal terrain for Di�erent values of k

uation functions are evaluated for 4 di�erent values of

k. Irrespective of the k value the wheeled robot out-

performs the legged robot. The functions � and � thus

partition the design space.

To illustrate the cause of the di�erence in the eval-

uation scores it is useful to re-examine Figures 6 and

7 on the same scale. This is done in Figure 11 where

we show the probability estimates for both MENO and

Marscar with k = 5 as a function of the time elapsed.

Seen on the same axis it is obvious that the wheeled

system does better with the 'area under the curve' met-

ric since it is a lot faster than the legged system in this

terrain (the Mars nominal rock distribution).

If Figures 8 and 9 are plotted on the same axis a

similar conclusion can be drawn regarding the energy
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Mars Nominal terrain for k = 5 as a Function of Energy

Consumed

scores. This is shown (again for k = 5) in Figure 12.

The wheeled robot needs far less energy to cover the

same distance compared to the energy consumption of

the legged robot over a similar distance for this partic-

ular rock distribution.

4.2 Sensitivity Studies - Environment

One of the objectives of this study was to measure

the e�ects of changes in environmental parameters on

the mobility metrics. The environment model used in

this study is the distribution of rocks called the Moore

distribution. In the vicinity of a previous mission to

Mars (the Viking II mission) the density of rocks is

much higher than the Mars nominal distribution used

thus far. The e�ect of terrain clutter is very clearly seen

in the two metrics. In the case of both robots, increased

clutter leads to performance degradation. However it is

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

time figure of merit

en
er

gy
 fi

gu
re

 o
f m

er
it

Legged

Wheeled VII

Wheeled nominal

o

+

*

x

k = 2

k = 4

k = 6

k = 8

Figure 13: MENO and Marscar mobility in Viking II

(cluttered) terrain for di�erent values of k

interesting to note that the wheeled system is a�ected

far more than the legged system. This is largely due to

the fact that the increased clutter leads to signi�cantly

longer paths for the wheeled system whereas the legged

system is able to go over many more obstacles and even

though it is slower its performance is comparable to the

legged robot. This is shown in Figure 13.

As one can see in Figure 13 the Marscar cluster

moves dramatically to the left and down when the

terrain was changed from Mars nominal to Viking II.

MENO performance also su�ered as seen in Figure 13

but not as dramatically. For this environment, its en-

ergy �gure of merit is better than Marscar.

4.3 Scalarization of the Metrics

The metrics � and � can be combined into a sin-

gle scalar metric using a weighted linear combination.

From the data presented in this Chapter we see that

the wheeled robot outperforms the legged vehicle along

both dimensions in Mars nominal terrain. The scalar-

ization chosen should preserve this ordering. A stan-

dard technique is to use a weighting function which is

either linear or quadratic and maximize the combina-

tion of the two metrics. However the problem of how

to choose the weights still remains. Instead of an ad

hoc solution we use domain knowledge to postulate a

feasible scalarization technique.



On one axis (� ) we are measuring the robot's ability

to use time e�ectively and on the other (�) we measure

e�ective energy utilization. The fundamental unit of

conversion between them is the maximumpower deliv-

ered by the onboard power source. If the power source

is capable of delivering � W then we weight energy and

time in the ratio 1 : �.

We computed the scalarized scores for k = 6 for the

di�erent cases reported in this Chapter using �1 = 30,

�2 = 40 and �3 = 50. Using this scalarization tech-

nique it is clearer that in sparse obstacle distributions

the legged system should be the preferred design while

in dense obstacle distributions (such as the Viking II

site) the nominal con�guration of the legged robot

MENO is the better design using these metrics and

this particular linear scalarization.

5 Discussion

Values of the two metrics, � and � for Marscar are

signi�cantly superior to the MENO values. The e�ect

of obstacle clutter, though, is more pronounced on the

wheeled robot.

There are three interesting aspects of the data pre-

sented here which form the basis for substantial fu-

ture research. The �rst deals with the following design

question: \In what parts of the design space are good

designs found ?". At �rst glance it may seem like the

answer is obvious - by de�nition it would seem like the

designs leading to the highest values of the evaluation

functions are the good parts of the design space. How-

ever, a closer look suggests that the real 'sweet spots'

in the design space are those where the design is in-

sensitive to changes in the environment. For example,

MENO in its nominal con�guration is insensitive to

changes in rock density. If there is large variability in

the expected terrain density it may be a better decision

to pick a design like MENO even though it has low eval-

uation scores compared to other designs. We are thus

led to believe that future scalarization e�orts should

include weighted contributions from select components

of the evaluation gradient in addition to the values of

the evaluation functions themselves.

The second interesting point also concerns the eval-

uation gradient. Locations in the design space where

the evaluation gradient becomes very large also pro-

vide interesting insight into design methodology. We

suggest that these locations in the design space sig-

nal a 'breakdown' in the current kinematic design and

a discrete jump to a new structure is indicated (with

higher articulation perhaps or with a larger number of

wheels).

A third application of the metrics proposed here is

to global optimization. While the technique for extrap-

olating performance shown here is local, it is possible

to extend it by instantiating a chain of local models

and following the evaluation gradient to an optimal set

of parameter values.
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Abstract

A large number of path planning problems are solved
by the use of graph based search algorithms. There
are a variety of techniques available to optimize the
search within these graphs as well as thorough studies
of the complexity involved in searching through them.
However, little effort has been dedicated to construct-
ing the graphs so that the results of searching will be
optimized.

The commonly used approach for the evaluation of
complexity assumes that the complexity of a path plan-
ner can be evaluated by the number of nodes in the
graph. However, in many path planning problems (es-
pecially in complex, dynamic environments) the evalu-
ation of the cost of traversing edges is the major culprit
of computational complexity. In this paper we will as-
sume that the complexity associated with the computa-
tion of cost of traversing an edge is significantly larger
than the overhead of searching through the graph. This
assumption creates non-trivial complexity results that
allows to optimize the creation of the graph based on
the computational power available.

We will present a numerical evaluation of several
graph creation algorithms including the commonly used
four and eight connected grid. Different scenarios for
which ground truth is available are explored. Compar-
ison among the graph creation algorithms reveals se-
rious downfalls that are common practice throughout
the literature.

1 Introduction

Planning can be defined as the process of finding
the steps necessary to bring a system from an initial
(current) state to a final (desired) state. Most plan-
ning techniques represent the planning problem in a
graph G(V, E). Where V is a set of vertices, and E
is a binary relation on V [6, 7, 9]. The elements of

the set V are called vertices and represent states. The
elements of the set E are called edges and represent
the ability of the system to move from one state to
another. In planning graphs, the edges are ordered or
unordered pairs of vertices, (vi, vj) where vi ∈ V and
vj ∈ V . A walk is an alternating sequence of vertices
and edges, a trail is a walk with distinct edges, and a
path is a trail with distinct vertices.

When solving a planning problem, we must find
a path or plan from a starting vertex vs to an end-
ing vertex ve while minimizing a cost function C =
∑e

s wij where wij is the cost of traversing the edge
(vi, vj). Some planning problems can be solved by al-
gorithms with polynomial complexity. Unfortunately,
these tractable set of problems covers only a few of the
relevant problems encountered in path planning. Most
problems, however, can only be solved by polynomial
algorithms on non deterministic machines, ie NP . For
a thorough study on the problem of tractability and
its taxonomy see [8].

One very useful tool when fighting the computa-
tional complexity of planning is the creation of hier-
archies of planners. The Real-time Control System
(RCS) reference model architecture is one such archi-
tecture and it has been successfully applied to multi-
ple diverse systems [1, 3]. The target systems for RCS
are in general, complex control problems. Although it
has been shown [2, 10] that the complexity of a control
problem is reduced by the use of a hierarchical control
system, the reduction of error as a function of com-
plexity at one level of the hierarchy has been mostly
overlooked.

The complexity of search algorithms inside a graph
has been thoroughly studied [11, 13, 14]. However,
with few exceptions [4, 12], little attention has been
paid on how the graph should be built with some ex-
ceptions [4, 12]. In most cases, it is recommended that
the graph for search on “empty space” should be built
using grids, Voronoi diagrams, or visibility graphs. It
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Figure 1: Average error for a 4 connected grid.

is not clear from the literature which of these methods
should be used and when. Moreover, in most cases the
complexity of algorithms is calculated solely based on
the number of vertices in the graph. In most path
planning problems, the computational complexity of
calculating the cost of the edges is orders of magnitude
higher than the actual time spent searching through
the graph once these values have been calculated.

2 Numerical Exploration of Graph Cre-
ation

In order to compare the different graph formation
algorithms, we started by defining a simple test sce-
nario. The analytical closed form evaluation of the
complexity of finding the optimum path taking under
consideration the placement of the vertices in the so-
lution space becomes easily intractable. Therefore, we
decided to study the problem numerically. In the ex-
periments presented in this paper, simple Euclidean
distances were used to calculate the cost of travers-
ing the edges. The advantage of using this measure
is that we have ground truth. We assumed that the
Euclidean distance is calculated with an accuracy of
five significant figures.

2.1 Grid Based Graphs

By far, the most commonly used graph for search
in planning algorithms is the four-connected square
grid. In this kind of graph, the vertices are placed at
regular intervals and it is assumed that each vertex
is connected to four (or eight) of its closest neighbors.
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Figure 2: Average error for a 8 connected grid.

Figure 3: Average distance to the mean.



We built a two dimensional four-connected square grid
with a random number of vertices. We repeated this
experiment several times. Figure 1 shows log(error)
where error is defined as

error = abs(ds,e − ((
ve
∑

vs

di,i+1) + ds,vs + de,ve)) (1)

s is a randomly selected starting point, e is a randomly
selected ending point, ve is the closest vertex in the
graph to e, vs is the closest vertex in the graph to s,
d(i, j) is the Euclidean distance between two points.
Please note that this cost function may underestimate
the real error of traversing the planned graph as it is
assuming that ds,vs and de,ve are Euclidean. This is a
best case scenario.

The summation in the equation represents the added
cost of the optimal path through the graph. The av-
erage error (marked with a black star in the Figure)
is kept constant as the number of edges is changed.
The different values at a particular number of edges
correspond to the different number of times that the
experiment was performed using different e and s.

Figure 2 shows the error function shown in 1 ap-
plied to a eight-connected grid. As expected, the er-
ror function settles at a lower error. By comparing
the 4-connected grid to the 8-connected grid we can
appreciate that the average error decreases with the
higher connectivity, however in both cases, the error
quickly settles to a constant value.

Please note that in both cases, increasing the num-
ber of edges, and therefore increasing the computa-
tional complexity gives us very modest improvements
of the final cost. Another problem found experimen-
tally with the 4 and 8 connected grids using this cost
function is that there are many paths that have ex-
actly the optimal cost. This has the effect that the
optimal path that the algorithm will choose, may wan-
der off the “expected” straight path line from e to s.
In other words, many paths within the parallelogram
defined by vs and ve have exactly the same “optimal”
cost. Another effect that results from square grids is
that the error varies significantly depending on the di-
rection of travel. A numerical evaluation of this devi-
ation can be appreciated by examining Figure 3. The
large average distance to the mean is due to the fact
that some s and e happened to be horizontal or verti-
cal, therefore giving small error, while some created a
very costly stair-step paths through the graph.

2.2 Shaking the Grid

Some of the pitfalls of the grid based graphs can be
avoided by:

1. Shaking the vertices within the grid. In other
words, building a square grid, adding a random
displacement to the vertices, and finally connect-
ing all the vertices that are within a neighbor-
hood. The size of the neighborhood dictates the
vertices to edges ratio. This has two effects:

(a) Break the ties among optimal paths so that
only one path is found to be optimal. This
is very helpful in re-planning systems as it
forces to commit instead of randomly flip-
ping among the set of “optimal” paths.

(b) Create a more uniformly distributed set of
vertices where all “ directionalities” are rep-
resented.

2. Create higher connectivity rates (higher than in
the 8-connected grid).

Figure 4 through Figure 7 shows the results of a
set of experiments run using the above principles. To
compute these figures, the vertices of the grid are
placed first in a grid pattern where each point is l
apart from its closest neighbor. Next, a random vec-
tor is added to each vertex of maximum amplitude 3l.
All vertices within a distance threshold are then con-
nected. By varying the connection threshold, different
ratios between the number of nodes and the number
of edges are achieved. We can see from Figure 4 that
the error decreases as the number of edges increases,
approaching the 10e-5 mark set by the 5 significant
figures used to calculate the Euclidean distances. Fig-
ure 5 shows a top view of the same numerically found
error. We can see that even a simple Euclidean cost
function creates ripple effects in the final cost.

If we take the assumption that the computational
complexity is directly proportional to the number of
edges (as it is in most cases), we can see in Figure
8 the error function as a function of the number of
nodes. The almost counter-intuitive results can be
explained from the fact that by increasing the number
of vertices the average cost of an edge decreases. In
Figure 9 we assumed that we could only calculate the
cost of 40000 edges. By visual inspection of Figure
9 we can determine that the least error is given by
about 2000 vertices, and therefore creating a graph
where each vertex has 20 connected neighbors.

3 Vehicle Planner Example

In order to validate the above rules of thumb, sev-
eral experiments were conducted using the Demo III
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Figure 4: Average error in a shaken grid.
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Figure 6: Percentage of failed planning processes in
shaken grid.
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Figure 7: Average distance to the mean in shaken grid.
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Figure 8: Error for different complexities and varying
number of vertices
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Figure 10: Planning result for complex cost map with
four-connected graph.

Figure 11: Planning result for complex cost map with
many-connected graph.

Vehicle Level Planner [5]. In these experiments, a
four-connected graph and a shaken graph of the form
of section 2.2 were run using a complex world model
and cost function. The four-connected graph had a
grid size of 8 meters with 61012 connections and the
shaken graph had a grid size of 11 meters with 45086
connections (26% fewer connections) and was shaken
±5.5 meters. The world model contained a priori in-
formation on the NIST grounds at 4 meter resolution
including the locations of wooded areas, buildings,
roads, and fences. It should be noted that the world
model resolution is twice that of the four-connected
graph and almost three times that of the highly-connected
graph.

In the Demo III Vehicle Level Planner, the planning
module passes path segment endpoints (the vertices of
the planning graph) to the world model for evaluation.
The world model simulates driving a straight line path
(the edges of the planning graph) between these end
points and returns the cost of traversal to the plan-
ner. The planner then conducts an optimal search
algorithm to find the cheapest path (in reference to
the cost function used by the world model). The cost
function used by the world model favored paths that
avoided roads and buildings, and drove next to, but
not in wooded areas combined with the time of traver-
sal of the route (assumed uniform vehicle velocity over
the route segment).

The straight line segments used by the world model
may cause plan failures when the resolution of the
planning graph is less then that of the world model.



This occurs when a very narrow low-cost corridor is
surrounded by a very high cost area. It may occur
that there are no straight line segments at the graph
resolution that traverse this low-cost corridor. This
phenomenon can be avoided in the highly-connected
graph by adding additional vertices in these high pay-
off areas. This approach was not taken in the experi-
ments described below.

Using this planning system, we found that the highly-
connected graph performed as much as 27% better
then the four-connected graph, even though it used
26% fewer connections. Sample output paths may be
seen in Figure 10 for the four-connected graph and
Figure 11 for the highly-connected graph. A snap-shot
of the world model may be seen as the background of
these images. As one would expect, the benefit of us-
ing the highly-connected graph is directly tied to the
shape of the optimal path. For straight paths, the two
graphs performed on par with each other. For paths
which required many turns, the highly-connected graph
significantly outperformed the four-connected graph.

4 Conclusion

• “Optimal” paths found using the four-connected
grid based graph are in general, directionally bi-
ased, favoring the traversal of the space in cer-
tain directions and not in others. They also
create symmetries that result in noncommittal
paths. Shaken grids and high connectivity be-
tween vertices was shown numerically to improve
these pitfalls.

• The number of edges in the graph and their
cost evaluation are in most cases, the major cul-
prit for computational complexity. Therefore, it
is recommended that the graph design process
starts by determining the number of edges that
can be evaluated, and then selecting the number
of vertices that give the least error.

• Numerical evaluation of the error are in most
cases the only way to select parameters for the
formation of search graphs in complex environ-
ments. Most analytical evaluations of the com-
plexity in the literature make the assumption
that the burden of computational complexity is
in the “opening” of the vertices in the search
graph, and are not readily applicable to plan-
ning problems.
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ABSTRACT 
The intelligence of a network of agents is reflected in the 
complexity of missions that can be accomplished, the 
degree of coordination/cooperation among the agents, and 
the level of uncertainty the system can tolerate and still 
accomplish its missions.  The networked system must be 
able to evaluate a situation, devise an appropriate 
response, and act accordingly.  Metrics must be devised 
to capture the complexity and surprises of the real world, 
and to capture the system’s need to reason about its 
situation so as to uncover unanticipated problems and 
opportunities.  Inputs for developing autonomous 
capability specifications (and thus metrics of interest) 
include (1) descriptions of expected missions, (2) the 
space of mission parameters, and (3) the cost/benefit ratio 
for operational concepts.  These inputs come from both 
current and anticipated missions.  Several of our recent 
projects have sought to quantify operational metrics for 
autonomous ground, air and undersea vehicles.  This 
paper presents our approach to high-level design of 
autonomous vehicles that produces the three inputs for 
metric development.  The approach and parameter spaces 
are illustrated with examples derived from several vehicle 
projects. 

Keywords: metrics, intelligence quotient, intelligent 
systems,  autonomous systems, collaborative systems, 
situation awareness, planning under uncertainty, orders of 
intelligence. 

1  INTRODUCTION 
The intelligence of a network of agents is a complex 
characteristic that can be quantified and measured in a 
wide variety of ways.  Our work on the design of 
intelligent autonomous vehicles and programs to develop 
such vehicles has made clear that the type of metric we 
develop will be chosen to meet a particular objective.  For 
instance, commercial sponsors will likely optimize some 
functionality, while researchers may try to optimize some 
measure of “pure” intelligence.  After reviewing a 
number of systems in ground, air and undersea domains, 
it becomes clear that the major characteristics of 
intelligence for any complex set of vehicles are the broad 

areas of multi-vehicle collaboration, understanding the 
world they operate in (situation awareness) and 
responding appropriately (planning under uncertainty).   

Metric development activity

Develop Mission Descriptions

Develop Mission Parameters

Analyze Parameter Space:
Current and Future Ops

Identify Required Technologies for
Future Ops

(Intelligent Autonomy Roadmap)

Literature
Experience

Site Visits to Researchers

Trade Study:
Cost/Benefit for Future Capabilities

Trade Study:
Cost/Benefit for Future Capabilities

Development Roadmap
(Goals and Objectives)

Development Roadmap
(Goals and Objectives)

Estimate Cost to Develop
Technologies

Estimate Benefit of Future Ops
Concepts

System and Operational
Requirements

 

Figure 1 -- Development Roadmap 

To guide the design of intelligent vehicles for particular 
domains, we have used the process illustrated in Figure 1. 
There are two major efforts shown – the left column 
focuses on the missions the vehicle is intended to 
accomplish, while the right column focuses on the 
technologies required to accomplish those missions.  The 
two columns could be loosely labeled requirements pull 
and technology push, respectively.  The areas we have 
considered for metric analysis to date are those shown 
surrounded with dotted lines.  Once thorough descriptions 
of the vehicles’ missions are developed, those are 
reviewed to extract parameters that affect performance.  
The mission descriptions are then extended to probe the 
space of the identified parameters.  This process is 
illustrated in detail in Section 2.   

A more humanly intuitive representation of the parameter 
space was sought, since the bare listing of parameters can 
be daunting (Section 3).  This introduces significant 
subjectivity, but allows aspects of intelligence to be 
clustered that seem to lead to strong collaborative 
systems.  

Section 4 discusses an attempt to quantize intelligence 
into “orders” of intelligence.  It begins with the point that 



“intelligence” is still a relatively undefined area, needing 
substantial work in the component technologies and in the 
development of appropriate metrics.  Despite that 
reservation, candidate levels of intelligence capability are 
described that might serve as an IQ for autonomous 
systems.  

Costs are another aspect of intelligence that require 
attention and metrics (Section 5).  For instance, a sponsor 
may seek to develop a comprehensive technology 
roadmap that will determine what technologies need 
investment to meet a particular set of system and 
operational requirements. 

The paper concludes with a brief discussion of some 
future directions for our work (section 6) and a summary 
(section 7). 

2  CONSTRUCTION OF PARAMETER SPACE 
The simplest way to evaluate a system’s success or 
failure at its task is often binary – did it accomplish some 
goal?  For instance, in RoboCup Soccer [3] as in human 
games, a single score is the final arbiter of success.  
However, the single score does not capture the 
complexity of the domain or of the team’s approach to 
various elements of the problem.  Thus additional 
“scores” are developed that rate game players on the 
skills that contribute to the final game score.  Such more 
detailed scores can be combined into a single weighted 
score, using multi-objective optimization techniques 
[1,2].  However, that requires significant work to 
determine appropriate weightings and combination 
techniques.   

The first step toward such a development is to flesh out 
the parameter space of the task.  A large number of 
factors can be considered in a thorough analysis of a 
collaborative group of vehicles.  We use the three 
characteristic areas named above (collaboration, situation 
awareness, and planning under uncertainty).  The 
following incomplete lists indicate some of the important 
elements for robots facing dangerous situations (military 
or other).  Each metric on the list requires a range of 
acceptable values and a weighting factor for combining 
them with other components. The factors can then be 
processed to produce a combined metric if such a score is 
desired.   

• Multi-vehicle collaboration factors 
• number of interacting agents 
• degree of coordination/cooperation among the 

agents 
• degree of improvement in situation awareness 

due to multiple vehicles 
• success of dynamic replanning to maintain 

configuration for communication 
• Situation awareness 

• amount of complexity and surprise of real world 
captured 

• number of elements 
• level of interactions between elements 
• dynamism 
• model complexity for target identification 
• observability 
• environmental challenge 

+ clear air/daylight – to – storms at night 
+ desert (all is visible) – to – mountainous 

(hard to see details) 
+ textured (landmarks differ) – to – desert/no 

texture 
• threat types 

+ from known type/location – to – suspected – 
to – unknown till aggression 

+ from id is straightforward (e.g., surface-to-
air-missile (SAM) radar) – to – 
difficult/uncertain (visual or synthetic 
aperture radar (SAR), near friendlies, 
signature similar to neutral or friendly  

• neutrals 
+ known type/location – to – threats 

masquerading as neutrals 
• friendlies 

+ known type/location – to – identify-friend-
foe (IFF) transponders off/broken or known 
but near threats 

• navigation 
+ sensors functioning and low uncertainty – to 

– sensors dropping out/damaged or high 
uncertainty 

• vehicle state (including equipage) 
+ sophistication of health monitoring and 

reconfiguration 
• time to sense and assimilate (separate from time 

to plan) 
+ enough time – to – insufficient time due to 

tempo or number of targets (so need to 
prioritize sensing and assimilation) 

• can successfully identify a target 
• can detect environmental changes of the 

following types: 
+ threats 
+ terrain 
+ collision 
+ targets of opportunity 

• Decision making and executing under uncertainty 
• extent that system reasons about its situation 

+ uncovers unanticipated problems 
+ uncovers opportunities 

• level of uncertainty the system can tolerate 
• performs under available time to plan 



• dynamic time constant that system can reason 
within 

• stochasticity - number of contingencies handled 
by system 

• number of decisions (i.e., size of planning 
problem) 

• quality of plan generation / selection algorithms 
• quality of planning approach (algorithms and 

representations) 
• complexity of mission / problem 
• complexity of controllable system 
• number of plan elements in flux simultaneously 
• number of levels in planning problem 

• ability to perform dynamic replanning due to: 
+ change in mission objectives 
+ environmental change detected 

 

Such a list of parameters is daunting, and only becomes 
more difficult to grasp and synthesize as the level of 
detail grows.  A more intuitive representation was sought 
to support analysis of the trade-offs involved in system 
design and funding.  The result is discussed in the 
following section.  
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Figure 2 -- Three-Dimensional Intelligence Space 

 

3  GRAPHICAL PARAMETER SPACE 
A three-dimensional graphical approach was used to 
illustrate where various systems and system designs fell 
in the overall parameter space (Figure 2).  This shows a 
particular three axes in the parameter space, recognizing 
that the whole estimation and metrics space is highly 

multi-dimensional.  Several such charts were prepared, 
but no canonical axes were identified that best serve all 
analysis purposes for all autonomous systems.  The figure 
shows axes of situation awareness, mobility, and task 
planning as creating a 3D intelligence space. A variety of 
autonomous and non-autonomous systems are included in 
the figure to highlight key parts of the resulting space.  



The representation’s key weakness is inherent in the 
choice of any set of 3 dimensions – key information from 
a fuller, higher-dimensional space is lost. Also 
problematic is the apparent linearity between ticks along 
any axis – what conclusions can be drawn by systems 
shown N ticks apart?  Still, there is the strong sense that 
this captures something fundamental and accurate about 
the intelligence present in a variety of compared systems. 
The primary difficulty with this approach, however, 
remains the subjective judgement that only a small 
number of axes is enough to grasp the entire intelligence 
space.  

4  AN INTELLIGENCE QUOTIENT? 
We have been asked at various junctures to provide 
metrics for autonomous systems development, in a 
similar vein to those provided by (for instance) engineers 
working in other disciplines who do not hesitate to 
propose metrics.  That has been a difficult request to 
answer, until the various exercises reported above led us 
to a key conclusion: Mature technologies can support 
more precise performance targets than immature 
technologies.  For instance, a group researching 
automatic target recognition (ATR) can aim to decrease 
the false alarm rate by 5%.  However, what similar metric 
applies to the broader aim of “increase intelligent 
autonomy”?   

This section discusses a reservation about characterizing 
intelligence, then proposes levels of capability that are 
our best-yet “intelligence quotient” for autonomous 
systems.  

4.1  A Philosophical Reservation 
Answering the above question may depend on how the 
question is phrased, but consider this goal:  enable 
autonomous dynamic mission replanning, based on 
discovered targets and conditions expected in the target 
area, while out of communication with the human 
operator.   Several questions spring to mind.  What 
technologies apply?  What are their margins for 
improvement?  Do we even know what is necessary to 
achieve the goal?  One approach is to consider finer-
grained technologies rather than the broad term of 
“autonomy”.  For instance, the following appear more 
susceptible to metrification.  

• Decrease route planning time-to-plan by 20% given 
contingencies of type A. 

• Increase ATR reliability for particular 
target/environment pairs by 10%. 

• Increase situation recognition capability by 
increasing contingency representation flexibility by 
10 times.  

 

We conclude that “intelligent autonomy” is an immature 
“technology” that is actually a composition of underlying 
technologies, all of varying maturities.  A small set of 
examples of component technologies with clear 
deficiencies (compared to human-level capabilities) 
follows. 

• Sensor data interpretation  
• Situation awareness and assessment 
• Communication 

• Efficient – perhaps better named “data 
communication” (bandwidth, rates, etc) 

• Effective – perhaps better named “knowledge 
communication” (content, concepts, 
transparency of thought processes) 

• Knowledge representation – know, represent and 
share: 
• What data toward what goals in what 

timeframes? 
• Why does datum A or set of data B matter? 
• Timeliness of concern 

+ Damage is expected to occur by time T 
(e.g., hostile strike group detected headed 
for barrier) 

+ Unless used by time T, data C not useful 
(e.g., a moving surface-to-air-missile 
launcher is detected 1 mile from bunker 
moving 10 mph - must use information 
within 6 minutes) 

• Relatedness of data 
• Collaboration 

+ Understand others’ goals 
+ Infer intent from observed behavior 

 

Thus finding ways to divide intelligence and autonomy 
into appropriate sub-technologies that can be weighed 
and combined properly is a critical problem facing this 
effort.  Lacking such a reliable analysis tool, we next 
consider one way to approach its formulation.  

4.2  Orders of Intelligence 
Given the above reservation, let us proceed to 
characterize intelligence by asking: how hard is a 
planning and execution problem?   Time to plan (TTP) 
depends on the size of the planning problem, but Moore’s 
Law will reduce TTP significantly by increasing the 
feasible size of planning problems.  However, TTP also 
depends on (a) the planning approach (algorithms and 
representations) and (b) the problem complexity.  Size of 
the problem is the easiest to provide metrics for.  The 
other two factors are used to modulate the metrics.  If a 
planning agent is only concerned with a certain time 
horizon (e.g., 10 milliseconds, 1 hour, 1 day), the level of 
detail it considers is similarly bounded.  Thus planning 



problems can be of similar sizes whether at the level of a 
single vehicle or a fleet of vehicles. 

There are numerous planning approaches.  For well-
characterized and well-formulated domains, search in a 
pre-defined state space is satisfactory.  For other 
problems, current pure research effots are unable to 
provide a well-defined solution.  More pragmatically, 
planning and execution systems can use a variety of 
hybrid approaches, the integration of which pose at least 
engineering issues.  

Problem complexity addresses characteristics beyond the 
simple size of the problem.  The characteristics that make 
planning, estimation and control difficult include the 
following elements.  Since planning needs to be 
concerned with what can be expected to occur, it must be 
concerned with expected results from estimation and 
control, that are affected by the following elements.   

• observability – the degree of hidden state (in 
controlled system or in situation being monitored) 

• complexity of the controllable system.  E.g., number 
and type of actuators, static and dynamic stability of 
the vehicle. 

• situation awareness complexity.  E.g.: 
• number of elements 
• interactions between elements 
• dynamism (e.g., likelihood to loose lock in 

tracking subsystem) 
• model complexity for target identification (e.g., 

2D image templates, 3D shape, functional 
analysis based on shape, behavioral) 

• degree to which situation awareness (SA) fulfills 
expectations 

• number of interacting agents.  Especially if multiple 
agents are simultaneously planning 

• number of plan elements in flux simultaneously.  
E.g., (a) is plan in place before SA is received, or (b) 
is SA being integrated while plan using it is being 
created?  Regarding example (a) consider the plan 
“go to area X and find tanks” (where “tanks” will be 
bound to those found by SA), whereas for (b) 
consider what the system needs to do when it finds 
itself unexpectedly under attack from unknown 
quarters. 

• number of levels in planning problem due to (i) 
number of elements, (ii) number of time horizons, 
etc. 

One approach to creating metrics for these problems is to 
classify problems from the domain into nominal orders of 
difficulty, then set targets for various demonstrations 
which move along the spectrum of difficulty.  For 
instance, reasonable goals might be created by aiming to 
solve a problem in 1 second in each demo year, where the 
size and complexity of the problem increases over time.  
Based on the nominal characterization below of levels of 

difficulty, the solvable problem size could increase from 
100 in demo 1 (say year 2), to 101 in demo 2 (year 4), and 
102 in demo 3 (year 6).  This folds together the expected 
advances in processor speed and capacity embodied in 
Moore’s Law with improvements in planning approaches 
resulting from pure and applied research progress.  Table 
1 captures this approach and leaves space for additional 
metrics at various levels of maturity.   
 

 100 101 102 103 

Demo 1 1 second 
(TTP0) 

   

Demo 2  1 second 
(TTP1) 

  

Demo 3   1 second 
(TTP2) 

 

Beyond    1 
second 
(TTP3) 

Table 1 -- Problem Size, and Plan for Increasing 
Demonstrable Complexity 

4.3  Nominal candidate orders of intelligence 
The following lists indicate relative order of magnitude 
capabilities that could be grouped together to assess the 
maturity of a system’s intelligence.  These are illustrative, 
not final. Order 0 activities may exist in preliminary 
commercial research forms or may need applied research 
and engineering to be fielded.  Higher order activities are 
believed to be beyond the current state of the art.   

Order 0 activities: 

• Single vehicle plans including (a) multi-waypoint 
path planning and execution cognizant of known 
threats, (b) obstacle avoidance given some warning, 
(c) deck landing in relatively benign environment 

• Multiple vehicle plans, for non-interacting vehicles 
• Plan to search area of regard (AOR) for target, where 

AOR is essentially flat and open, and target can be 
found by template matching. 

• Re-plan communication relay service due to 
disruption of channel, using prior known assets. 

• Re-plan for changed objective, where 
accomplishment of the objective is in the future from 
the current time-horizon. 

• Re-plan task particulars due to change in SA.  E.g., 
arrive in kill box and discover that the targets to be 
hit are tanks instead of a column of trucks. 

• identify targets of opportunity based on their 
appearance 

 
Order 1 activities: 

• single vehicle obstacle avoidance given less warning 
and/or more constraints on response (e.g., in 



confined airspace due to terrain or other vehicles, 
near vehicle limits for responsiveness) 

• single vehicle deck landing in moderate sea state 
and/or moderate visibility 

• Plan to act as autonomous communication relay 
between moving communication partners, where the 
partners are moving in ways that are expected to 
disrupt communication within foreseeable future.  
Thus plan must include a plan to identify and involve 
additional communication relays.  Alternative 
contingencies would include planning for disruptions 
that might occur due to weather, jamming, or other 
hostile activity. 

• Re-plan for changed objective, where 
accomplishment is within current time-horizon, 
requiring current SA to be integrated while planning 
is underway using the being-acquired SA. 

• identify targets of opportunity based on their 
appearance where (e.g.) detection depends on sensor 
angle, so vehicle must do more extensive search to 
cover the space of AOR-cross-sensor-attitude.  E.g., 
tanks at edge of forest need to be sensed from the 
open side.  Vehicle should understand the constraints 
(not just fly more lanes of a survey pattern). 

• multi-vehicle plans for interacting vehicles 
• strike group flight plan through waypoints and 

around known threats 
• re-plan task goals due to change in SA.  E.g., while 

on wild weasel mission switch to coordinated multi-
vehicle SAM attack. 

 
Order 2 activities: 

• single vehicle deck landing in high sea state and/or 
low visibility and/or high and gusty winds 

• coordinated obstacle avoidance for a strike group 
flying very close together 

 
Order 3 activities: 

• identify targets of opportunity based on their 
behavior (from prior planning/SA need model of 

behavior and identification of behavior based on 
model) 

 
These characterizations build on those detailed in Section 
2 – as vehicles increase their ranking in the Orders of 
Intelligence, they exhibit more capability in the parameter 
spaces. For example, consider the multi-vehicle 
collaboration factor of degree of coordination / 
cooperation among the agents. The Order 0 system 
includes multiple vehicle plans for non interacting 
vehicles. This could include an system that distributes the 
team goals among the individual agents for separate 
completion. The Order 1 system includes a higher level 
capability in this area of multi-vehicle plans for 
interacting vehicles. Here agents can communicate to one 
another when they fail or if they are able to take on an 
increased set of tasks. The Order 2 system increases the 
requirements on coordination and cooperation to 
coordinated obstacle avoidance for a strike group flying 
very close together. The system will be required to share 
situation awareness information and plan coordinated 
responses at very short time constants. 

5  METRICS FOR COSTS 
To create a plan for funding toward a goal, an assessment 
must be made of the state of the technology against the 
require capabilities.  Figure 3 shows such an assessment.  
It was constructed by asking technology experts to 
determine the state of maturity of their technologies for 
solving various parts of a vehicle’s parameter space.  The 
colors indicate technological maturity levels: 

 red  pure research needed (6.1) 
 yellow applied research needed (6.2) 
 green  ready for engineering (6.3) 
 blank not applicable 
 

Although this is not a measure of intelligence per se, it 
supports analyses leading to the construction of 
intelligence vehicles and groups of vehicles.   

 
 

 

Figure 3 -- Technology Roadmap (partial). 
Columns are technologies considered appropriate for addressing the domain, while rows are elements of the vehicle’s 

parameter space. 
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Figure 4 -- Cost/Benefit Analysis. 
(left) Where in the parameter space future intelligently autonomous operations exist.  

(right) Part of a cost-benefit analysis to select among various operations based on cost. 

 

The notional charts in Figure 4 illustrate how required 
capabilities can be mapped against mission descriptions 
of current and future operations, to help determine which 
are more valued, and to help determine which are 
expected to be more expensive.  Formal methods for such 
cost projections would be very helpful.  

6  FUTURE DIRECTIONS 
Substantial work has been done in applying valuations to 
multi-attribute (multi-criteria) problems.  Besides a 
number of good textbooks (e.g., [1,2]), various techniques 
have been formalized to assist in this process.  We intend 
to extend the work reported here by investigating and 
applying formal tools to the domain characteristics 
discussed above.  

7  SUMMARY 
The intelligence of an autonomous vehicle is a complex 
multi-dimensional characteristic evaluated in a wide 
variety of dynamic situations, for which no obvious 
algorithmic measures exist.  Several attempts to analyze 
system complexity and intelligence have been presented 
in this paper that are drawn from work done for recent 
and current projects working toward intelligent 
autonomous vehicles.  These analyses have sought to 
uncover the collaboration, planning and situational 
awareness challenges facing an autonomous vehicle in 
difficult conditions, to assist engineers and sponsors in 
focusing project efforts.  Although the analyses reported 
here have been useful first steps toward the significantly 
complex vehicles imagined, more work is clearly required 
before intelligence and intelligent systems can be 
automatically analyzed and measured. 
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